
Equalisation

Practically, the frequency response of a channel is not known sufficiently

accurately to allow for the design of a receiver with zero ISI for all time. The
output from the channel is therefore usually filtered in such a way that the
channel-induced distortion is corrected. This process is called equalisation,

and is often implemented using a transversal filter structure:
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As shown, the transversal filter consists of a tapped delay line where the tap
outputs are multiplied by gain factors. The resulting products are summed to

produce the filter output. The transversal structure is popular for this
application because it is easy to analyse and design, and has efficient means of
implementation. The input x(t) is from the channel, and the equaliser is

designed to provide an output waveform y(t) that has zero ISI.

The tap coefficients ak are set to subtract the effects of interference from

symbols that are adjacent in time to the current symbol. Consider the case of
2N + 1 taps with coefficients a−N , . . . , a0, . . . , aN . Letting xk = x(kTs) and
yk = y(kTs), the equaliser output at the sample points is

yk =

N
∑

n=−N

anxn−k .
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Note that the filter as written is not causal, but can be made so by delaying the
output by N samples, and writing yk+N for yk .

The criterion for selecting the filter coefficients is typically based on
minimising either the peak or mean-square distortion. Minimising peak
distortion can be achieved choosing ak so that the equaliser output is forced to
zero at N sample points on either side of the desired pulse. Under this
condition, we require that the equaliser output satisfy

yk =







1 k = 0

0 k = ±1, . . . , ±N .

This formulation leads to a zero-forcing equaliser which is guaranteed to
produce zero ISI for N samples before and N samples after the peak of the
pulse.

The conditions on the zero-forcing equaliser can be written as

N
∑

n=−N

anxk−n =







1, k = 0

0, k = ±1, . . . , ±N .

This represents 2N + 1 equations in the 2N + 1 unknowns
a−N , . . . , a0, . . . , aN . The system of equations can be represented in matrix
form as
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Thus the equations take the form He = Xca, where He and a are the column
vectors on the left and right hand sides respectively, and Xc is the matrix as
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indicated. The solution

a = Xc
−1He

therefore provides the set of values for the tap coefficients of the transversal
filter that gives zero ISI.

The N -tap equaliser can only force the ISI to zero for N samples before and

after the current time. In general it can therefore not completely eliminate ISI.

However, the ISI beyond N samples is usually negligible since the time

response has decayed to an insignificant amplitude over that range.

There are two general types of automatic equalisation. In preset equalisation
the transmitter emits a training sequence that is compared by the receiver to a
locally generated sequence. The differences between the two are used to set

the filter coefficients. The initial training session must be repeated periodically,

usually after any break in transmission. Also, if the channel is time-varying

then performance suffers.

The taps can be adjusted to minimise the mean-square error (MSE) between

the received signal yk and the known training signal ck . For K samples the
MSE is

e2 =
1

K

K
∑

k=1

(yk − ck)
2.

At the optimal tap weight setting the error is minimised, so

de2

dan
= 0

for all the tap weights an . Differentiating gives the necessary condition
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K

K
∑

k=1

(yk − ck)xk−n = 0, n = 0, ±1, . . . , ±N .

Note that this is equivalent to the condition that

Rex (n) = 0, n = 0, ±1, . . . , ±N ,
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where Rex (n) is the cross correlation between the error sequence and the input

sequence. We therefore require that these sequences be uncorrelated. Weight

adjustment procedures can be developed to enforce this condition.

In adaptive equalisation, the coefficients are continually and automatically

adjusted from the transmitted data. This performs well if the channel error

performance is satisfactory, but in poor performance environments the received

channel errors may not allow the coefficient adjustment algorithm to converge.

A common solution is to use preset equalisation initially, and then to switch to

adaptive equalisation once normal transmission begins.
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Example:
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