
Quantisation noise

In order to encode a continuous-time signal, we must first quantise it into a

finite number of discrete amplitude signals. The quantisation depends on

the desired number of different signal levels (the resolution), and the

maximum variation of the signal to be represented (the range). Once

quantised, the instantaneous values of the signals are lost, and can never be

reconstructed exactly.

The quantising operation can be viewed as a a function operating on each

sample value. In the case of uniform quantising there is a uniform

spacing between the quantisation levels:
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Equivalently, the quantisation operation can be considered in terms of an

input-output relation of the form:

1

−a

a 2a 3a 4a

a

3a

4a

2a

−3a

−4a

−2a

−a

output

input
−4a −3a −2a

The signal is mapped through this function prior to being sampled.

We can define the quantisation noise, or quantisation error, as the time

function that is the difference e(t) = f (t) − f (t), where f (t) and fq(t)

are the signals before and after quantisation:
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Since we are discussing discrete-time signals, the error at each sample
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point is given by

en = e(nTs) = f (nTs) − fq(nTs).

Here fq(nTs) is the quantised signal value at the time of the nth sample.

Consider the case of uniform quantisation, with a spacing a between

quantisation levels. In the absence of any further specific knowledge, a fair

assumption is that the quantising error will be uniformly distributed

between −a/2 and a/2:
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The average value of this error is zero, owing to the symmetry of the

probability density. The mean square error (MSE) is
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It is reasonable to model this loss of accuracy as an additive noise random

process. The quantised signal can therefore be considered to be generated

as the sum of the unquantised sample values, and a zero-mean random

noise process with power a2/12:

f (nTs) = fq(nTs) + e(nTs).

3 Peak signal SNR

The peak voltage in the input signal is Vpp/2 = na/2, so the peak signal

power is (na/2)2. The ratio of peak signal power to average quantisation
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noise power is therefore
(
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peak quant
=
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= 3n2

or, in decibels,
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peak quant (dB)
= 4.8 + 20 log10 n.

For a binary code with n = 2m this becomes
(
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)

peak quant (dB)
= 4.8 + 6.02m.

The peak SNR therefore increases by 6dB for every additional bit used in a

binary system.

4 Mean signal SNR

Essentially similar results are obtained upon defining a mean power SNR.

Under the assumption that the signal occupies each of the n quantisation

levels with equal probability, the average signal power is equal to
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This sum can be written as

S =
1

12
(n2

− 1)a2,

so the mean power output SNR is given by
(

S

N

)

= n2
− 1 ≈ n2.

This only differs by a constant from the peak ratio discussed before.
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5 Nonuniform quantisation

In the case of uniform quantisation levels, the quantisation noise power

depends only on the spacing between the levels. This is independent of the

actual signal level at any instant. In some applications this is undesirable

— for example, in a speech system a fixed quantisation noise power will be

more objectionable when a quiet speaker is speaking than when a loud one

is.

A remedy is to use nonuniform quantisation levels. This can be achieved

by using a nonuniform quantiser:
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More often, nonuniform quantisation is achieved by first distorting the

original signal with a nonlinear compressor characteristic, and then using

a uniform quantiser on the result:
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A given signal change at small magnitudes will then carry the uniform

quantiser through more steps than the same change at large magnitudes. At

the receiver, an inverse compression characteristic (or expansion) is

applied, so that the overall transmission is not distorted. The processing

pair (compression and expansion) is usually referred to as companding.

A uniform quantiser makes sense when the probability distribution of the

signal in the range −Vmax to Vmax is uniform. If we have reason to believe

that the distribution is nonuniform, and we know what the actual

distribution is, then we can place nonuniform quantisation levels in an

optimal manner.

Recall from the discussion on information theory that the entropy is

maximised if the probability of occurrence of each level is equal. Thus we

should choose the quantisation levels to ensure that this condition is met:
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Stremler discusses this in more detail.
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Questions

1. A signal voltage in the frequency range 100 to 4000Hz is limited to a

peak-to-peak swing of 3V. It is sampled at a uniform rate of 8kHz, and

the samples are quantised to 64 evenly spaced levels. Calculate and

compare the bandwidths and ratios of peak signal to RMS quantisation

noise if the quantised samples are transmitted either as binary digits or

as four-level pulses.

2. The sinusoidal voltage 10 sin(6280t) is sampled at t = 0.33ms and

thereafter periodically at a 3kHz rate. The samples are then quantised

into eight voltage levels and coded into binary digits. Use MATLAB

to plot the original voltage and below it the outputs of the sampler, the

quantiser, and the encoder. Calculate the RMS quantisation noise.
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