EEE4001F EXAM DIGITAL SIGNAL PROCESSING

University of Cape Town Department of Electrical Engineering

July 2017 3 hours

Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has *five* questions totalling 50 marks. You must answer all of them.
- Part B has *five* questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

PART A

Digital signal processing

- 1. Suppose x[n] = u[n+1] and $g[n] = (\frac{1}{2})^n u[n-1]$.
 - (a) Sketch x[n] and g[n].
 - (b) Find and plot y[n] = g[n] * x[n].
 - (c) What is the z-transform G(z)? Draw a pole-zero plot and indicate the ROC.
 - (d) What is the DC gain of the system with impulse response g[n]?

(10 marks)

2. A causal LTI system is described by the difference equation

$$y[n] = 2.5y[n-1] - 1.5y[n-2] + 3(x[n] - x[n-1]),$$

where x[n] is the input and y[n] is the output.

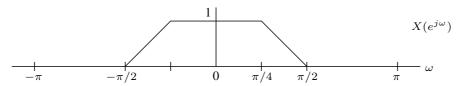
(a) Show that the system transfer function is

$$H(z) = \frac{3}{1 - 3/2z^{-1}}.$$

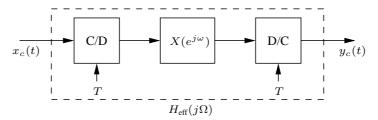
- (b) Draw a pole-zero plot of H(z) and indicate the region of convergence.
- (c) Find the impulse response h[n] of the system.
- (d) Is the system stable?

(10 marks)

3. Consider the signal below:

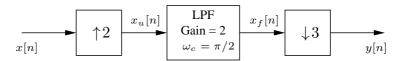


(a) Suppose an analog filter is constructed as follows:



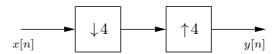
Sketch the frequency response $H_{\rm eff}(j\Omega)$ for $T=10^{-3}$ seconds, indicating clearly all frequencies of interest.

(b) Suppose $X(e^{j\omega})$ is the input to the system below:



Sketch $X_u(e^{j\omega})$, $X_f(e^{j\omega})$, and $Y(e^{j\omega})$.

(c) Sketch $Y(e^{j\omega})$ for the case where $X(e^{j\omega})$ is the input to the system below:



(10 marks)

4. Consider the system function

$$H(z) = 4\frac{z + 0.8}{z^2}.$$

- (a) Sketch the frequency response magnitude $H(e^{j\omega})$.
- (b) What is the gain of the system for $\omega=0$ and $\omega=\pi$ rad/sample?
- (c) What is the phase of the system for $\omega=\pi/2$ rad/sample?
- (d) What type of filter does the system represent?
- (e) Find the impulse response of the system.

(10 marks)

5. Consider two LTI systems with impulse responses

$$h_1[n] = u[-n-1]$$
 and $h_2[n] = \delta[n-1] - \delta[n]$.

- (a) Plot $h_1[n]$ and $h_2[n]$.
- (b) Find the system functions $H_1(z)$ and $H_2(z)$ along with their ROCs.
- (c) An LTI system with impulse response h[n] is called invertible if there exists $h_i[n]$ such that $h[n]*h_i[n]=\delta[n]$. Are the two systems given above inverses of one another?
- (d) Find the impulse response of the inverse system for

$$h[n] = nu[n].$$

(e) What conditions must be poles and zeros of a causal and stable system satisfy for it to have a causal and stable inverse?

(10 marks)

PART B

Wavelets and frames

Problem 1:

Let $\varphi(t)$ denote the unit box function with the support (0,1). Let T(t) denote the convolution of $\varphi(t)$ with itself. Remember T(0)=0, T(1)=0, and T(2)=0. Let S(t) denote the convolution of T(t) with $\varphi(t)$.

(a) Calculate
$$S(t)$$
. (8 marks)

(b) Plot the graph of
$$S(t)$$
. (2 marks)

(Total: 10 marks)

Problem 2:

Consider the function f(t) defined as follows:

$$f_n(t) = \begin{cases} \sin(n2\pi \frac{t}{L}) & -\frac{L}{2} \le t \le \frac{L}{2} \\ 0 & \text{elsewhere.} \end{cases}$$

- (a) Calculate $||f_n(t)||_2$, the L_2 norm of $f_n(t)$ for arbitrary n. (3 marks)
- (b) Let $\tilde{f}_n(t)$ refer to the normalized $f_n(t)$. Calculate the inner product $<\tilde{f}_m(t)|\tilde{f}_n(t)>$ in detail. (3 marks)
- (c) Express the resolution of identity operator $\hat{\mathbb{I}}$ in terms of the orthonormal basis $\{\tilde{f}_n(t)|n\in\hat{\mathbb{N}}\}.$ (4 marks)

(Total: 10 marks)

Problem 3:

Let the coefficients h_0 , h_1 , h_2 , h_3 be defined as follows:

$$h_0 = \frac{1+\sqrt{3}}{4\sqrt{2}}, \qquad h_1 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \qquad h_2 = \frac{3-\sqrt{3}}{4\sqrt{2}}, \qquad h_3 = \frac{1-\sqrt{3}}{4\sqrt{2}}.$$

Consider the following dilation equation for the scaling function $\varphi(t)$ with its support being the interval [0,3]:

$$\varphi(t) = h_0 \left\{ \sqrt{2} \varphi(2t) \right\} + h_1 \left\{ \sqrt{2} \varphi(2t-1) \right\} + h_2 \left\{ \sqrt{2} \varphi(2t-2) \right\} + h_3 \left\{ \sqrt{2} \varphi(2t-3) \right\}.$$

- (a) Sample (evaluate) the functions at both sides of this equation successively at integer points t=0, t=1, t=2, and t=3. This process generates a 4×4 eigenvalue equation for the determination of $\varphi(0), \varphi(1), \varphi(2), \text{ and } \varphi(3).$ Provide the explicit expression for the resulting eigenvalue equation. (2 marks)
- (b) From the resulting 4×4 system of equations determine the values $\varphi(0)$ and $\varphi(3)$ first. Then determine the values for $\varphi(1)$ and $\varphi(2)$. (2 marks)
- (c) Using the equation above determine the values for $\varphi(\frac{1}{2})$, $\varphi(\frac{3}{2})$, and $\varphi(\frac{5}{2})$. (2 marks) Consider the following dilation equation for the wavelet $\psi(t)$ with its support being the

 $\psi(t) = -h_0 \left\{ \sqrt{2}\varphi(2t-1) \right\} + h_1 \left\{ \sqrt{2}\varphi(2t) \right\} - h_2 \left\{ \sqrt{2}\varphi(2t+1) \right\} + h_3 \left\{ \sqrt{2}\varphi(2t+2) \right\}.$

(d) Calculate the values for $\psi(-1)$, $\psi(-\frac{1}{2})$, $\psi(\frac{1}{2})$, and $\psi(2)$. (4 marks)

(Total: 10 marks)

Problem 4:

interval [-1, 2]:

- (a) Do the discrete filter coefficients $\left\{a_0 = \frac{1}{2\sqrt{2}}, a_1 = \frac{1}{\sqrt{2}}, a_2 = \frac{1}{2\sqrt{2}}\right\}$ constitute a low-pass, bandpass, or a high-pass filter? (2 marks)
- (b) Why? (Detailed calculations and a graph are required.) (3 marks)
- (c) Do the discrete filter coefficients $\left\{b_0 = -\frac{1}{2\sqrt{2}}, b_1 = \frac{1}{\sqrt{2}}, b_2 = -\frac{1}{2\sqrt{2}}\right\}$ constitute a low-pass, bandpass, or a high-pass filter? (2 marks)
- (d) Why? (Detailed calculations and a graph are required.) (3 marks)

(Total: 10 marks)

Problem 5:

Consider the frame vectors f_1 , f_2 , f_3 , and f_4 defined as follows:

$$\mathbf{f_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{f_2} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{f_3} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \quad \mathbf{f_4} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

- (a) Construct the frame operator S corresponding to the given frame vectors f_1 , f_2 , f_3 , and f_4 . (3 marks)
- (b) Construct the dual frame vectors $\tilde{\mathbf{f}}_1$, $\tilde{\mathbf{f}}_2$, $\tilde{\mathbf{f}}_3$, and $\tilde{\mathbf{f}}_4$. (3 marks)
- (c) Express the resolution of identity (operator) in terms of the given frame vectors $\mathbf{f_1}$, $\mathbf{f_2}$, $\mathbf{f_3}$, and $\mathbf{f_4}$ and the constructed dual frame vectors $\tilde{\mathbf{f}}_1$, $\tilde{\mathbf{f}}_2$, $\tilde{\mathbf{f}}_3$, and $\tilde{\mathbf{f}}_4$. (2 marks)
- (d) Assuming a general vector

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix},$$

demonstrate the analysis and synthesis steps by using the constructed expression for the identity operator. (2 marks)

(Total: 10 marks)

Discrete-time Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n}dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common discrete-time Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n]$ $(a < 1)$	$\frac{1}{1-ae^{-i\omega}}$	
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1-ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$\sin(\omega_C n)$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \end{cases}$	
πn	$0 \qquad \omega_C < \omega \le \pi$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Z-transform properties

Sequences $x[n], y[n]$	Transforms $X(z), Y(z)$	ROC	Property
ax[n] + by[n]	aX(z) + bY(z)	ROC contains $R_x \cap R_y$	Linearity
$x[n-n_d]$	$z^{-n}dX(z)$	$ROC = R_x$	Time shift
$z_0^n x[n]$	$X(z/z_0)$	$ROC = z_0 R_x$	Frequency scale
$x^*[-n]$	$X^*(1/z^*)$	$ROC = \frac{1}{R_T}$	Time reversal
nx[n]	$-z \frac{dX(z)}{dz}$	$ROC = R_x$	Frequency diff.
x[n] * y[n]	X(z)Y(z)	ROC contains $R_x \cap R_y$	Convolution
$x^*[n]$	$X^{*}(z^{*})$	$ROC = R_x$	Conjugation

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z-m	All z except 0 or ∞
$a^nu[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^{n}u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n) u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r