PART A

EEE4001F EXAM
 DIGITAL SIGNAL PROCESSING

University of Cape Town Department of Electrical Engineering

June 2015
3 hours

Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has six questions totalling 50 marks. You must answer all of them.
- Part B has ten questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

Digital signal processing

1. Consider a causal linear time-invariant system which results in the output

$$
y[n]=\left(\frac{1}{3}\right)^{n} u[n]
$$

when the input is

$$
x[n]=\frac{1}{4}\left(\frac{1}{2}\right)^{n+1} u[n+1] .
$$

(a) Plot $x[n]$.
(b) Determine a closed-form expression for the impulse response $h[n]$ of the system.
(c) Is the system stable? Why?
(10 marks)
2. (a) An LTI system has impulse response $h[n]=5(1 / 2)^{n} u[n]$ where $u[n]$ is the unit step sequence. Use the discrete-time Fourier transform to find the output of this system when the input is $x[n]=(1 / 3)^{n} u[n]$.
(b) Find the signal $h[n]$ with the following DTFT:

$$
H\left(e^{j \omega}\right)=2\left(e^{j \omega}\right)^{2}-\frac{3\left(e^{j \omega}\right)^{-3}}{e^{j \omega}-\frac{1}{2}}
$$

(10 marks)
3. Let $x[n]$ be the input and $y[n]$ the output of a finite impulse response filter such that

$$
y[n]=4 x[n]-x[n-2] .
$$

(a) Find the poles and zeros of the filter and plot them in the z-plane.
(b) Sketch the magnitude of the frequency response.
(c) Determine the gain of the filter at frequencies 0 and $\pi / 2$ radians per sample.
(d) Find an expression for the magnitude of the frequency response of this filter.
4. (a) You measure

$$
X_{1}[0]=4, \quad X_{1}[1]=-j 4, \quad X_{1}[2]=-2, \quad X_{1}[3]=j 4
$$

and

$$
X_{2}[0]=2, \quad X_{2}[1]=1-j, \quad X_{2}[2]=2, \quad X_{2}[3]=1+j,
$$

where $X_{1}[k]$ is the DFT of $x_{1}[n]$ and $X_{2}[k]$ is the DFT of $x_{2}[n]$. What is the 4-point circular convolution of $x_{1}[n]$ and $x_{2}[n]$?
(b) How you would use the FFT to do linear convolution of two signals, each of length 4?
(10 marks)
5. Specify a scheme for reducing the sampling rate of a signal to 0.75 of its original sampling frequency. Sketch the magnitude of the frequency response of any filters employed.
(5 marks)
6. Suppose a linear time-invariant system is described by the following system function:

$$
H(z)=\frac{\left(z-\frac{1}{2}\right)(z+2)\left(z^{2}+\frac{1}{9}\right)}{\left(z^{2}+2 z+5\right)\left(z^{2}-4 z+13\right)}
$$

(a) Draw a pole-zero plot for the system
(b) Determine all possible regions of convergence, and for each indicate whether the corresponding inverse z -transform is left-sided, right-sided, or two-sided. What can you say about the stability of $H(z)$?

PART B

Wavelets and frames.

P1: Let the function $f(x)$ be defined by

$$
\begin{equation*}
f(x)=e^{-\frac{1}{2} x^{2}} \quad-\infty<x<\infty \tag{1}
\end{equation*}
$$

P1-a: Calculate $\|f(x)\|_{2}$, the $L_{2}-$ norm of $f(x)$.
P1-b: Let $\tilde{f}(x)$ denote $f(x)$ normalized. Write down the expression for $\widetilde{f}(x)$.

$$
(2+1=3 \text { Marks })
$$

P2: Consider the following complete set of orthogonal functions on the interval $(-\pi, \pi)$:

$$
\begin{equation*}
1,\{\cos (n t) \mid n \in \mathbb{N}\},\{\sin (n t) \mid n \in \mathbb{N}\} \tag{2}
\end{equation*}
$$

P2-a: Calculate the $L_{2}-$ norm of the functions $1, \cos (n t)$ and $\sin (n t)$ on the interval $(-\pi, \pi)$.
P2-b: Utilizing Dirac's bra-ket notation, consider the following resolution of identity for the $L_{2}-$ space of functions with support $(-\pi, \pi)$:

$$
\begin{align*}
\mathbb{I}= & \left|\frac{1}{\sqrt{2 \pi}}><\frac{1}{\sqrt{2 \pi}}\right| \\
& +\sum_{n \in \mathbb{N}}\left|\frac{1}{\sqrt{\pi}} \cos (n t)><\frac{1}{\sqrt{\pi}} \cos (n t)\right| \\
& +\sum_{n \in \mathbb{N}}\left|\frac{1}{\sqrt{\pi}} \sin (n t)><\frac{1}{\sqrt{\pi}} \sin (n t)\right| \tag{3}
\end{align*}
$$

Let the function $f(t)$ satisfy Dirichlet's conditions on the interval $(-\pi, \pi)$, and be zero outside this interval. In bra-ket notation write $\mid f(t)>$ for $f(t)$. Assume that the operation of (3) from the left onto $\mid f(t)>$ results in:

$$
\begin{align*}
\mathbb{I} \mid f(t)>= & \left|\frac{1}{\sqrt{2 \pi}}><\frac{1}{\sqrt{2 \pi}}\right| f(t)> \\
& +\sum_{n \in \mathbb{N}}\left|\frac{1}{\sqrt{\pi}} \cos (n t)><\frac{1}{\sqrt{\pi}} \cos (n t)\right| f(t)> \tag{4}
\end{align*}
$$

Is $f(t)$ an even function or an odd function?
P2-c: Let the function $f(t)$ satisfy Dirichlet's conditions on the interval $(-\pi, \pi)$, and be zero outside this interval. In bra-ket notation write $\mid f(t)>$ for $f(t)$. Assume that the
operation of (3) from the left onto $\mid f(t)>$ results in:

$$
\begin{equation*}
\left.\mathbb{I}\left|f(t)>=\sum_{n \in \mathbb{N}}\right| \frac{1}{\sqrt{\pi}} \sin (n t)><\frac{1}{\sqrt{\pi}} \sin (n t) \right\rvert\, f(t)> \tag{5}
\end{equation*}
$$

$$
\text { Is } f(t) \text { an even function or an odd function? }
$$

P2-d: What is the expression for the resolution of identity, which characterizes the space of even functions with support $(-\pi, \pi)$.
P2-e: What is the expression for the resolution of identity, which characterizes the space of odd functions with support $(-\pi, \pi)$?

$$
(2+1+1+2+2=8 \text { Marks })
$$

P3: Let the normalized functions $\varphi(t)$ and $\psi(t)$ denote the scaling function and the wavelet of a Multiresolution Analysis (MRA) in Hilbert space, respectively. Let the function $\varphi(t)$ generate the function space ν_{0}. Let the function $\psi(t)$ and its compressed versions generate the spaces $, \mathcal{W}_{0}, \mathcal{W}_{1}, \mathcal{W}_{2}, \cdots$. Consider the following representation for $f(t)$:

$$
\begin{equation*}
f(t)=\sum_{k=-\infty}^{\infty} c_{k} \varphi(t-k)+\sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} d_{j, k} 2^{\frac{j}{2}} \psi\left(2^{j} t-k\right) \tag{6}
\end{equation*}
$$

P3-a: Write down the expression for c_{k}.
P3-b: Write down the expression for $d_{j, k}$.
P3-c: Write down the expression for the resolution of identity using the set of scaling and wavelet functions!

$$
(2+2+2=6 \text { Marks })
$$

P4-a: Given general 'low pass'" filter coefficient $h(n)$ write down the two-scale dilation equation for the normalized scaling function $\varphi(t)$.
P4-b: Given general 'high pass'" filter coefficients $g(n)$ write down the two-scale dilation equation for the normalized wavelet $\psi(t)$.

$$
(2+2=4 \text { Marks })
$$

P5-a: Determine the filter coefficients $h(n)$ for the triangle (piece-wise linear) scaling function.
P5-b: Do the coefficients $h(n)$ constitute a "low pass'" filter or a "high pass"' filter? Why?
P5-c: Determine the filter coefficients $g(n)$ for the triangle (piece-wise linear) wavelet.
P5-d: Do the coefficients $g(n)$ constitute a 'low pass'" filter or a "high pass'" filter? Why?

$$
(2+2+2+2=8 \text { Marks })
$$

P6: Consider the fairly general function $f(t)$. Denote the Fourier transform of $f(t)$ by $F(\omega)$. Construct $F_{\mathcal{M}}(\omega)$ as follows:

$$
\begin{equation*}
F_{\mathcal{M}}(\omega)=\frac{F(\omega)}{\sqrt{\sum_{n=-\infty}^{\infty}|F(\omega+2 \pi n)|^{2}}} \tag{7}
\end{equation*}
$$

Let $f_{\mathcal{M}}(t)$ denote the inverse Fourier transform of $F_{\mathcal{M}}(\omega)$. Using the Parseval's Theorem calculate the norm of $f_{\mathcal{M}}(t)$.
(4 Marks)

P7: Using the general dilation equation for the wavelet function, express the five-generations compressed normalized wavelet

$$
2^{\frac{5}{2}} \psi\left(2^{5} t-m\right)
$$

in terms of linear superposition of $2^{\frac{6}{2}} \varphi\left(2^{6} t-n\right)$ over n.

P8: Construct and plot the Mexican-hat wavelet $\mathcal{M}_{h}(t)$.

$$
(1+1=2 \text { Marks })
$$

P9: Let $\mid \mathbf{e}_{1}>$ and $\mid \mathbf{e}_{2}>$ be unit normal vectors in the $(x, y)-$ plane.
Let the vectors $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$ be defined by the following equations:

$$
\begin{align*}
\mid \mathbf{f}_{1}> & =4\left|\mathbf{e}_{1}>-\right| \mathbf{e}_{2}> \tag{8a}\\
\mid \mathbf{f}_{2}> & =3\left|\mathbf{e}_{1}>+2\right| \mathbf{e}_{2}> \tag{8b}
\end{align*}
$$

P9-a: Construct the dual vectors $<\widetilde{\mathbf{f}}_{1} \mid$ and $<\widetilde{\mathbf{f}}_{2} \mid$ corresponding to $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$, respectively, first graphically and then analytically.
P9-b: Employ Dirac's bra-ket notation. Resolve the identity operator \mathbb{I} in terms of the ket-vectors $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$ and their dual bra-vectors $<\widetilde{\mathbf{f}}_{1} \mid$ and $<\widetilde{\mathbf{f}}_{2} \mid$.

$$
(2+1=3 \text { Marks })
$$

P10: Let $\mid \mathbf{e}_{1}>$ and $\mid \mathbf{e}_{2}>$ denote unit normal vectors in the (x, y)-plane.
Let the ket vectors $\left|\mathbf{f}_{1}>,\right| \mathbf{f}_{2}>$ and $\mid \mathbf{f}_{3}>$ be defined by the following equations:

$$
\begin{align*}
\mid \mathbf{f}_{1}> & =2\left|\mathbf{e}_{1}>-\right| \mathbf{e}_{1}> \\
\mid \mathbf{f}_{2}> & =3\left|\mathbf{e}_{1}>+\right| \mathbf{e}_{2}> \tag{9b}\\
\mid \mathbf{f}_{3}> & =2\left|\mathbf{e}_{1}>+2\right| \mathbf{e}_{2}> \tag{9c}
\end{align*}
$$

The over-complete set of vectors $\left|\mathbf{f}_{1}\right\rangle, \mid \mathbf{f}_{2}>$ and $\mid \mathbf{f}_{3}>$ constitutes a frame
P10-a: Determine the dual frame (bra vectors) $<\widetilde{\mathbf{f}}_{1}\left|,<\widetilde{\mathbf{f}}_{2}\right|$ and $<\widetilde{\mathbf{f}}_{3} \mid$.
P10-b: Resolve the identity operator \mathbb{I} in the plane in terms of the frame vectors $\left|\mathbf{f}_{1}>,\right| \mathbf{f}_{2}>$ and $\mid \mathbf{f}_{3}>$ and their corresponding dual frame vectors $<\widetilde{\mathbf{f}}_{1}\left|,<\widetilde{\mathbf{f}}_{2}\right|$ and $<\widetilde{\mathbf{f}}_{3} \mid$.

$$
(4+4=8 \text { Marks })
$$

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d} X\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \underline{d X e})$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z-1}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{(1-a z-1)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z-1}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1+z^{-2}}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

