EEE4001F EXAM DIGITAL SIGNAL PROCESSING

University of Cape Town Department of Electrical Engineering

June 2013 3 hours

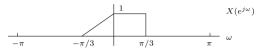
Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has six questions totalling 50 marks. You must answer all of them.
- Part B has ten questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

PART A

Basic digital signal processing theory.

1. A sequence x[n] has a zero-phase DTFT $X(e^{j\omega})$ given below:



Sketch the DTFT of the sequence $2x[n]e^{-j\pi n/3}$.

(5 marks)

2. Find the impulse response corresponding to the system function

$$H(z) = \frac{7z^2 - 4z}{z^2 - \frac{3}{2}z - 1}$$

for each possible region of convergence. In each case comment on the causality and stability properties of the system.

(10 marks)

3. Let x[n] be a discrete-time signal obtained by sampling the continuous signal x(t) at a sampling rate $f_s = 1/T$ Hz:

$$x[n] = x(nT).$$

Assume that no aliasing occurs. Describe by sketching a block diagram and providing a clear explanation, how you would implement a *discrete-time* system with input x[n] and output y[n] that delays x[n] by half a sample, so

$$y[n] = x(nT - T/2).$$

Hint: make use of upsamplers, downsamplers, and ideal filters.

(5 marks)

4. Consider the following discrete-time sequences:

$$x[n] = 2\delta[n] + 3\delta[n-1] + \delta[n-2] + 5\delta[n-3]$$
$$y[n] = \delta[n] - 2\delta[n-3].$$

- (a) Write an expression for the 4-point DFT X[k] of x[n], and find the value X[1].
- (b) Find the 4-point inverse DFT of $X[k]W_4^k$, where X[k] is the 4-point DFT of x[n] and $W_4=e^{-j\frac{2\pi}{4}}$.
- (c) Find the 4-point circular convolution of x[n] with y[n].
- (d) Explain how you would calculate the result for part (c) using the fast Fourier transform (FFT).
- (e) How could you use the FFT to calculate the linear convolution of x[n] and y[n]?

(10 marks)

5. A discrete-time, causal, linear time-invariant filter H(z) has

six zeros located at:
$$z=e^{\pm j\pi/8}, z=e^{\pm j7\pi/8}, z=\pm 1$$
 and six poles located at: $z=\pm j0.95, z=0.95e^{\pm j9\pi/20}, z=0.95e^{\pm j11\pi/20}.$

- (a) Plot the pole-zero diagram of H(z) in the z-plane and provide its region of convergence.
- (b) Sketch the magnitude response $|H(e^{j\omega})|$ directly from the pole-zero plot, and indicate the approximate gain at $\omega=\pi/2$.
- (c) What type of frequency-selective filter is $H(e^{j\omega})$? Explain your answer.
- (d) Answer the following questions, explaining your answers:
 - i. Is H(z) an IIR or FIR filter?
 - ii. Is H(z) a stable filter?
 - iii. Is h[n], the impulse response of the filter, a real function?

(10 marks)

6. Consider a causal LTI system with the system function

$$H(z) = \frac{1 - a^{-1}z^{-1}}{1 - az^{-1}}$$

where a is real.

- (a) Write a difference equation that relates the input and the output of this system
- (b) For what range of values of a is the system stable?
- (c) For a = 1/2 plot the pole-zero diagram and show the ROC.
- (d) Find the impulse response h[n] for this system for a = 1/2.
- (e) Determine and plot the magnitude response of this system for a=1/2. What type of system is it?

(10 marks)

PART B

Wavelets and frames.

P1: Let the function f(t) be defined by

$$f(t) = \begin{cases} \sin(n\pi t) & -1 < t < 1\\ 0 & \text{elsewhere} \end{cases}$$
 (1)

P1-a: Calculate $||f(t)||_2$, the L_2 -norm of f(t).

(2 marks)

P1-b: Let $\widetilde{f}(t)$ denote f(t) normalized; i.e., $\|\widetilde{f}(t)\|_2 = 1$. Write down the expression for $\widetilde{f}(t)$.

(2 marks)

P2: Consider the following complete set of orthonormal functions on the interval (-1,1):

$$\frac{1}{\sqrt{2}}, \left\{\cos\left(n\pi t\right) \mid n \in \mathbb{N}\right\}, \left\{\sin\left(n\pi t\right) \mid n \in \mathbb{N}\right\} \tag{2}$$

Utilizing Dirac's bracket notation, consider the following resolution of identity for the L_2 -space of functions with support (-1,1):

$$\mathbb{I} = \left| \frac{1}{\sqrt{2}} > < \frac{1}{\sqrt{2}} \right| + \sum_{n \in \mathbb{N}} \left| \cos \left(n\pi t \right) > < \cos \left(n\pi t \right) \right| + \sum_{n \in \mathbb{N}} \left| \sin \left(n\pi t \right) > < \sin \left(n\pi t \right) \right|$$
(3)

Let the function f(t) satisfy Dirichlet's conditions on the interval (-1,1), and be zero outside this interval. In bracket notation write |f(t)> for f(t). Operate (3) from the left onto the function |f(t)> to obtain:

$$\mathbb{I}|f(t)\rangle = |\frac{1}{\sqrt{2}}\rangle \langle \frac{1}{\sqrt{2}}|f(x)\rangle + \sum_{n\in\mathbb{N}} |\cos(n\pi t)\rangle \langle \cos(n\pi t)|f(t)\rangle
+ \sum_{n\in\mathbb{N}} |\sin(n\pi t)\rangle \langle \sin(n\pi t)|f(t)\rangle$$
(4)

It is self-evident that certain groups of terms in (4) vanish for even- or odd-functions, and thus the Eq. (4) simplifies for such functions.

P2-a: Simplify the expression on the right-hand side of the Eq. (4) for functions f(t) satisfying the condition f(-t) = f(t) on the interval (-1,1).

(2 marks)

P2-b: Deduce from your result obtained in **P2-a** the expression for the resolution of identity, which characterizes the space of even functions with support (-1, 1).

(2 marks)

P2-c: Simplify the expression on the right-hand side of the Eq. (4) for functions f(t) satisfying the condition f(-t) = -f(t) on the interval (-1, 1).

(2 marks)

P2-d: Deduce from your result obtained in **P2-c** the expression for the resolution of identity, which characterizes the space of odd functions with support (-1,1).

(2 marks)

P3: Let the functions $\varphi(t)$ and $\psi(t)$ denote the scaling function and the wavelet for a Multiresolution Analysis (MRA) in Hilbert space. Let the function $\varphi(t)$ generate the function space ν_0 . Let the function $\psi(t)$ and its compressed versions generate the spaces $\mathcal{W}_0, \mathcal{W}_1, \mathcal{W}_2, \cdots$.

Assume the following representation for f(t) is valid:

$$f(t) = \sum_{k = -\infty}^{\infty} c_k \varphi(t - k) + \sum_{j = 0}^{\infty} \sum_{k = -\infty}^{\infty} d_{j,k} 2^{\frac{j}{2}} \psi(2^j t - k)$$
 (5)

Consider the right-hand side of (5).

P3-a: Why is the first term a single series?

P3-b: Why is the second term (following the summation sign) a double series?

P3-c: Write down the expression for c_k .

P3-d: Write down the expression for $d_{i,k}$.

P3-e: Utilize Dirac's bracket notation, and consider the results obtained in **P3-c** and **P3-d**. In the light of your results deduce the expression for the resolution of identity from (5).

P3-f: Let j run from $-\infty$ to ∞ . Considering the result obtained in the previous step, deduce the expression for the resolution of identity, when j varies from $-\infty$ to ∞ .

(6 marks)

P4-a: Given the general "low pass" filter coefficient h(n) write down the two-scale dilation equation for the scaling function.

(2 marks)

P4-b: Given the general "high pass" filter coefficients g(n) write down the two-scale dilation equation for the wavelet.

(2 marks)

P5-a: Determine the filter coefficients h(n) for the triangle (piece-wise linear) scaling function.

(2 marks)

P5-b: The coefficients h(n), characterizing the triangle (piece-wise linear) scaling function, constitute a "low pass" filter. Why?

(2 marks)

P5-c: Determine the filter coefficients g(n) for the triangle (piece-wise linear) wavelet.

(2 marks)

P5-d: The coefficients g(n), characterizing the triangle (piece-wise linear) wavelet, constitute a "high pass" filter. Why?

(2 marks)

P6: Given a fairly general function f(t). Apply Meyer's orthogonalization technique to f(t).

(4 marks)

P7: Using the general dilation equation for the wavelet $\psi(t)$, express the three-generations compressed normalized wavelet

$$2^{\frac{3}{2}}\psi(2^{3}t-m)$$

in terms of $2^{\frac{4}{2}}\varphi(2^4t-n)$ summed over n.

(4 marks)

P8: The Mexican-hat wavelet $\mathcal{M}_h(t)$ can be obtained by taking the second derivative of the negative Gaussian function:

$$\mathcal{G}(t) = -\frac{1}{2}e^{-t^2}$$

Sketch the Mexican-hat wavelet $\mathcal{M}_h(t)$.

(2 marks)

P9: Ordinarily signal-analysis and signal -synthesis are carried out by using a system of orthonormal basis (ONB) functions. However, if the orthonormality condition of the analysis basis functions is violated, a system of dual basis functions is required for accomplishing the synthesis of signals. The following problem illustrates the content of this concept in terms of vectors.

Let $|\mathbf{e}_1|$ and $|\mathbf{e}_2|$ be unit normal vectors in the (x, y)-plane.

Let the vectors $|\mathbf{f}_1\rangle$ and $|\mathbf{f}_2\rangle$ be defined by the following equations:

$$|\mathbf{f}_1> = 2|\mathbf{e}_1>+1|\mathbf{e}_2>$$
 (6a)

$$|\mathbf{f}_2> = 2|\mathbf{e}_1> +4|\mathbf{e}_2>$$
 (6b)

Evidently, the vectors $|\mathbf{f}_1\rangle$ and $|\mathbf{f}_2\rangle$ are neither normal nor orthogonal.

Provide a sketch of the vectors $|\mathbf{f}_1>$ and $|\mathbf{f}_2>$.

Construct the dual vectors $<\widetilde{\mathbf{f}}_1|$ and $<\widetilde{\mathbf{f}}_2|$ corresponding to $|\mathbf{f}_1>$ and $|\mathbf{f}_2>$, respectively, first graphically and then analytically.

Employ Dirac's bracket notation.

Resolve the identity operator \mathbb{I} in the plane (i.e., the 2×2 unity matrix) in terms of the ket-vectors $|\mathbf{f}_1|$ and $|\mathbf{f}_2|$ and their dual bra-vectors $< \tilde{\mathbf{f}}_1|$ and $< \tilde{\mathbf{f}}_2|$.

(3 marks)

P10: In the foregoing problem it was mentioned that customarily signal-analysis and signal-synthesis are carried out by using a system of orthonormal basis (ONB) functions. However, if the analysis functions are over-complete (they constitute a frame), a system of over-complete functions (dual frames) is required for accomplishing the synthesis of signals. The following problem illustrates the content of this concept in terms of vectors.

Let $|\mathbf{e}_1|$ and $|\mathbf{e}_2|$ denote unit normal vectors in the (x,y)-plane.

Let the ket vectors $|\mathbf{f}_1\rangle$, $|\mathbf{f}_2\rangle$ and $|\mathbf{f}_3\rangle$ be defined by the following equations:

$$|\mathbf{f}_1\rangle = |\mathbf{e}_1\rangle \tag{7a}$$

$$|\mathbf{f}_2\rangle = |\mathbf{e}_1\rangle - |\mathbf{e}_2\rangle \tag{7b}$$

$$|\mathbf{f}_3\rangle = |\mathbf{e}_1\rangle + |\mathbf{e}_2\rangle$$
 (7c)

The over-complete set of vectors $|\mathbf{f}_1\rangle$, $|\mathbf{f}_2\rangle$ and $|\mathbf{f}_3\rangle$ constitutes a frame.

The dual frame (bra vectors) $<\widetilde{\mathbf{f}}_1|$, $<\widetilde{\mathbf{f}}_2|$ and $<\widetilde{\mathbf{f}}_3|$ are given as follows:

$$\langle \widetilde{\mathbf{f}}_1 | = \frac{1}{3} \langle \mathbf{e}_1 |$$
 (8a)

$$<\widetilde{\mathbf{f}}_{2}| = \frac{1}{3} < \mathbf{e}_{1}| - \frac{1}{2} < \mathbf{e}_{2}|$$
 (8b)

$$<\widetilde{\mathbf{f}}_{3}| = \frac{1}{3} < \mathbf{e}_{1}| + \frac{1}{2} < \mathbf{e}_{2}|$$
 (8c)

Resolve the identity operator \mathbb{I} in the plane (i.e., the 2×2 unity matrix) in terms of the frame vectors $|\mathbf{f}_1\rangle$, $|\mathbf{f}_2\rangle$ and $|\mathbf{f}_3\rangle$ and their dual frame vectors $<\widetilde{\mathbf{f}}_1|$, $<\widetilde{\mathbf{f}}_2|$ and $<\widetilde{\mathbf{f}}_3|$.

(7 marks)

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n}dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az-1}{(1-az-1)^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
	1-27 cos(w0)2 +r 2	