PART A

Basic digital signal processing theory.

EEE4001F EXAM
 DIGITAL SIGNAL PROCESSING

University of Cape Town Department of Electrical Engineering

June 2013
3 hours

Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has six questions totalling 50 marks. You must answer all of them.
- Part B has ten questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

1. A sequence $x[n]$ has a zero-phase DTFT $X\left(e^{j \omega}\right)$ given below:

Sketch the DTFT of the sequence $2 x[n] e^{-j \pi n / 3}$.
2. Find the impulse response corresponding to the system function

$$
H(z)=\frac{7 z^{2}-4 z}{z^{2}-\frac{3}{2} z-1}
$$

for each possible region of convergence. In each case comment on the causality and stability properties of the system.
3. Let $x[n]$ be a discrete-time signal obtained by sampling the continuous signal $x(t)$ at a sampling rate $f_{s}=1 / T \mathrm{~Hz}$:

$$
x[n]=x(n T)
$$

Assume that no aliasing occurs. Describe by sketching a block diagram and providing a clear explanation, how you would implement a discrete-time system with input $x[n]$ and output $y[n]$ that delays $x[n]$ by half a sample, so

$$
y[n]=x(n T-T / 2)
$$

Hint: make use of upsamplers, downsamplers, and ideal filters.
4. Consider the following discrete-time sequences:

$$
\begin{aligned}
x[n] & =2 \delta[n]+3 \delta[n-1]+\delta[n-2]+5 \delta[n-3] \\
y[n] & =\delta[n]-2 \delta[n-3] .
\end{aligned}
$$

(a) Write an expression for the 4 -point DFT $X[k]$ of $x[n]$, and find the value $X[1]$.
(b) Find the 4-point inverse DFT of $X[k] W_{4}^{k}$, where $X[k]$ is the 4-point DFT of $x[n]$ and $W_{4}=e^{-j \frac{2 \pi}{4}}$.
(c) Find the 4-point circular convolution of $x[n]$ with $y[n]$.
(d) Explain how you would calculate the result for part (c) using the fast Fourier transform (FFT).
(e) How could you use the FFT to calculate the linear convolution of $x[n]$ and $y[n]$?
(10 marks)
5. A discrete-time, causal, linear time-invariant filter $H(z)$ has

$$
\begin{aligned}
\text { six zeros located at: } & z=e^{ \pm j \pi / 8}, z=e^{ \pm j 7 \pi / 8}, z= \pm 1 \\
\text { and six poles located at: } & z= \pm j 0.95, z=0.95 e^{ \pm j 9 \pi / 20}, z=0.95 e^{ \pm j 11 \pi / 20}
\end{aligned}
$$

(a) Plot the pole-zero diagram of $H(z)$ in the z-plane and provide its region of convergence.
(b) Sketch the magnitude response $\left|H\left(e^{j \omega}\right)\right|$ directly from the pole-zero plot, and indicate the approximate gain at $\omega=\pi / 2$.
(c) What type of frequency-selective filter is $H\left(e^{j \omega}\right)$? Explain your answer
(d) Answer the following questions, explaining your answers:
i. Is $H(z)$ an IIR or FIR filter?
ii. Is $H(z)$ a stable filter?
iii. Is $h[n]$, the impulse response of the filter, a real function?
6. Consider a causal LTI system with the system function

$$
H(z)=\frac{1-a^{-1} z^{-1}}{1-a z^{-1}}
$$

where a is real.
(a) Write a difference equation that relates the input and the output of this system
(b) For what range of values of a is the system stable?
(c) For $a=1 / 2$ plot the pole-zero diagram and show the ROC.
(d) Find the impulse response $h[n]$ for this system for $a=1 / 2$.
(e) Determine and plot the magnitude response of this system for $a=1 / 2$. What type of system is it?

PART B

Wavelets and frames.

P1: Let the function $f(t)$ be defined by

$$
f(t)= \begin{cases}\sin (n \pi t) & -1<t<1 \tag{1}\\ 0 & \text { elsewhere }\end{cases}
$$

P1-a: Calculate $\|f(t)\|_{2}$, the $L_{2}-$ norm of $f(t)$.

P1-b: Let $\tilde{f}(t)$ denote $f(t)$ normalized; i.e., $\|\tilde{f}(t)\|_{2}=1$. Write down the expression for $\tilde{f}(t)$.

P2: Consider the following complete set of orthonormal functions on the interval $(-1,1)$:

$$
\begin{equation*}
\frac{1}{\sqrt{2}},\{\cos (n \pi t) \mid n \in \mathbb{N}\},\{\sin (n \pi t) \mid n \in \mathbb{N}\} \tag{2}
\end{equation*}
$$

Utilizing Dirac's bracket notation, consider the following resolution of identity for the $L_{2}-$ space of functions with support $(-1,1)$:

$$
\begin{align*}
\mathbb{I}=\left|\frac{1}{\sqrt{2}}><\frac{1}{\sqrt{2}}\right| & +\sum_{n \in \mathbb{N}}|\cos (n \pi t)><\cos (n \pi t)| \\
& +\sum_{n \in \mathbb{N}}|\sin (n \pi t)><\sin (n \pi t)| \tag{3}
\end{align*}
$$

Let the function $f(t)$ satisfy Dirichlet's conditions on the interval $(-1,1)$, and be zero outside this interval. In bracket notation write $\mid f(t)>$ for $f(t)$. Operate (3) from the left onto the function $\mid f(t)>$ to obtain:

$$
\begin{align*}
\mathbb{I}\left|f(t)>=\left|\frac{1}{\sqrt{2}}><\frac{1}{\sqrt{2}}\right| f(x)>\right. & +\sum_{n \in \mathbb{N}}|\cos (n \pi t)><\cos (n \pi t)| f(t)> \\
& +\sum_{n \in \mathbb{N}}|\sin (n \pi t)><\sin (n \pi t)| f(t)> \tag{4}
\end{align*}
$$

It is self-evident that certain groups of terms in (4) vanish for even- or odd-functions, and thus the Eq. (4) simplifies for such functions.

P2-a: Simplify the expression on the right-hand side of the Eq. (4) for functions $f(t)$ satisfying the condition $f(-t)=f(t)$ on the interval $(-1,1)$.

(2 marks)

P2-b: Deduce from your result obtained in P2-a the expression for the resolution of identity, which characterizes the space of even functions with support $(-1,1)$.

P2-c: Simplify the expression on the right-hand side of the Eq. (4) for functions $f(t)$ satisfying the condition $f(-t)=-f(t)$ on the interval $(-1,1)$.
(2 marks)
P2-d: Deduce from your result obtained in P2-c the expression for the resolution of identity, which characterizes the space of odd functions with support $(-1,1)$.

P3: Let the functions $\varphi(t)$ and $\psi(t)$ denote the scaling function and the wavelet for a
Multiresolution Analysis (MRA) in Hilbert space. Let the function $\varphi(t)$ generate the
function space ν_{0}. Let the function $\psi(t)$ and its compressed versions generate the spaces
$\mathcal{W}_{0}, \mathcal{W}_{1}, \mathcal{W}_{2}, \cdots$.
Assume the following representation for $f(t)$ is valid:

$$
\begin{equation*}
f(t)=\sum_{k=-\infty}^{\infty} c_{k} \varphi(t-k)+\sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} d_{j, k} 2^{\frac{j}{2}} \psi\left(2^{j} t-k\right) \tag{5}
\end{equation*}
$$

Consider the right-hand side of (5).
P3-a: Why is the first term a single series?
P3-b: Why is the second term (following the summation sign) a double series?
P3-c: Write down the expression for c_{k}.
P3-d: Write down the expression for $d_{j, k}$.
P3-e: Utilize Dirac's bracket notation, and consider the results obtained in P3-c and P3-d. In the light of your results deduce the expression for the resolution of identity from (5).
P3-f: Let j run from $-\infty$ to ∞. Considering the result obtained in the previous step, deduce the expression for the resolution of identity, when j varies from $-\infty$ to ∞.
(6 marks)

P4-a: Given the general "low pass'" filter coefficient $h(n)$ write down the two-scale dilation equation for the scaling function.
(2 marks)
P4-b: Given the general 'high pass'" filter coefficients $g(n)$ write down the two-scale dilation equation for the wavelet.

P5-a: Determine the filter coefficients $h(n)$ for the triangle (piece-wise linear) scaling function.

(2 marks)

P5-b: The coefficients $h(n)$, characterizing the triangle (piece-wise linear) scaling function, constitute a 'low pass'" filter. Why?
(2 marks)
P5-c: Determine the filter coefficients $g(n)$ for the triangle (piece-wise linear) wavelet.
(2 marks)
P5-d: The coefficients $g(n)$, characterizing the triangle (piece-wise linear) wavelet, constitute a 'high pass"' filter. Why?
(2 marks)
P6: Given a fairly general function $f(t)$. Apply Meyer's orthogonalization technique to $f(t)$.

(4 marks)

P7: Using the general dilation equation for the wavelet $\psi(t)$, express the three-generations compressed normalized wavelet

$$
2^{\frac{3}{2}} \psi\left(2^{3} t-m\right)
$$

in terms of $2^{\frac{4}{2}} \varphi\left(2^{4} t-n\right)$ summed over n.

P8: The Mexican-hat wavelet $\mathcal{M}_{h}(t)$ can be obtained by taking the second derivative of the negative Gaussian function

$$
\mathcal{G}(t)=-\frac{1}{2} e^{-t^{2}}
$$

Sketch the Mexican-hat wavelet $\mathcal{M}_{h}(t)$.

P9: Ordinarily signal-analysis and signal -synthesis are carried out by using a system of orthonormal basis (ONB) functions. However, if the orthonormality condition of the analysis basis functions is violated, a system of dual basis functions is required for accomplishing the synthesis of signals. The following problem illustrates the content of this concept in terms of vectors.
Let $\mid \mathbf{e}_{1}>$ and $\mid \mathbf{e}_{2}>$ be unit normal vectors in the $(x, y)-$ plane.
Let the vectors $\left|\mathbf{f}_{1}\right\rangle$ and $\left|\mathbf{f}_{2}\right\rangle$ be defined by the following equations:

$$
\begin{align*}
& \left|\mathbf{f}_{1}\right\rangle=2\left|\mathbf{e}_{1}\right\rangle+1\left|\mathbf{e}_{2}\right\rangle \tag{6a}\\
& \left|\mathbf{f}_{2}\right\rangle=2\left|\mathbf{e}_{1}\right\rangle+4\left|\mathbf{e}_{2}\right\rangle \tag{6b}
\end{align*}
$$

Evidently, the vectors $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$ are neither normal nor orthogonal.
Provide a sketch of the vectors $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$.
Construct the dual vectors $<\widetilde{\mathbf{f}}_{1} \mid$ and $<\widetilde{\mathbf{f}}_{2} \mid$ corresponding to $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$, respectively, first graphically and then analytically.
Employ Dirac's bracket notation.
Resolve the identity operator \mathbb{I} in the plane (i.e., the 2×2 unity matrix) in terms of the ket-vectors $\mid \mathbf{f}_{1}>$ and $\mid \mathbf{f}_{2}>$ and their dual bra-vectors $<\widetilde{f}_{1} \mid$ and $<\widetilde{f}_{2} \mid$.

P10: In the foregoing problem it was mentioned that customarily signal-analysis and signal-synthesis are carried out by using a system of orthonormal basis (ONB) functions. However, if the analysis functions are over-complete (they constitute a frame), a system of over-complete functions (dual frames) is required for accomplishing the synthesis of signals. The following problem illustrates the content of this concept in terms of vectors.
Let $\left|\mathbf{e}_{1}\right\rangle$ and $\left|\mathbf{e}_{2}\right\rangle$ denote unit normal vectors in the (x, y)-plane.
Let the ket vectors $\left|\mathbf{f}_{1}\right\rangle,\left|\mathbf{f}_{2}\right\rangle$ and $\left|\mathbf{f}_{3}\right\rangle$ be defined by the following equations:

$$
\begin{align*}
\mid \mathbf{f}_{1}> & =\mid \mathbf{e}_{1}> \tag{7a}\\
\mid \mathbf{f}_{2}> & \left.=\left|\mathbf{e}_{1}>-\right| \mathbf{e}_{2}\right\rangle \tag{7b}\\
\mid \mathbf{f}_{3}> & \left.=\left|\mathbf{e}_{1}>+\right| \mathbf{e}_{2}\right\rangle \tag{7c}
\end{align*}
$$

The over-complete set of vectors $\left|\mathbf{f}_{1}\right\rangle, \mid \mathbf{f}_{2}>$ and $\mid \mathbf{f}_{3}>$ constitutes a frame.
The dual frame (bra vectors) $<\widetilde{\mathbf{f}}_{1}\left|,<\widetilde{\mathbf{f}}_{2}\right|$ and $<\widetilde{\mathbf{f}}_{3} \mid$ are given as follows:

$$
\begin{align*}
<\widetilde{\mathbf{f}}_{1} \mid & \left.=\frac{1}{3}<\mathbf{e}_{1} \right\rvert\, \tag{8a}\\
<\widetilde{\mathbf{f}}_{2} \mid & =\frac{1}{3}<\mathbf{e}_{1}\left|-\frac{1}{2}<\mathbf{e}_{2}\right| \tag{8b}\\
<\widetilde{\mathbf{f}}_{3} \mid & =\frac{1}{3}<\mathbf{e}_{1}\left|+\frac{1}{2}<\mathbf{e}_{2}\right| \tag{8c}
\end{align*}
$$

Resolve the identity operator \mathbb{I} in the plane (i.e., the 2×2 unity matrix) in terms of the frame vectors $\left|\mathbf{f}_{1}>,\right| \mathbf{f}_{2}>$ and $\mid \mathbf{f}_{3}>$ and their dual frame vectors $<\widetilde{f}_{1}\left|,<\widetilde{\mathbf{f}}_{2}\right|$ and $<\widetilde{\mathbf{f}}_{3} \mid$.
(7 marks)

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d} X\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \underline{d X e})$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a-2-1}{(1-a z-1)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z-1}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1+2}-z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

