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Information

• The exam is closed-book.

• There are two parts to this exam.

• Part A hasseven questions totalling 70 marks. You must answer all of them.

• Part B hastwo questions, each counting 15 marks. You must answerboth of them.

• A table of standard Fourier transform and z-transform pairsappears at the end of this

paper.

• A formula sheet for the radar/sonar question appears at the end of this paper.

• You have 3 hours.
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PART A
Answer all of the following questions.

1. If x[n] is the signal below

0 1 2 3−1

1 1

2

n

x[n]

then plot the following:

(a) y1[n] = x[1− n]
(b) y2[n] = x[−2n+ 1]

(c) y3[n] = x[n]− x[n− 1]

(d) y4[n] =
∑n
k=−∞ x[k]

(e) y5[n] = x[n] ∗ u[n].
(10 marks)

2. Consider the following linear constant coefficient difference equation:

y[n]− 3

4
y[n− 1] +

1

8
y[n− 2] = 2x[n− 1].

Determiney[n] whenx[n] = δ[n] andy[n] = 0 for n < 0.

(10 marks)
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3. Consider the linear time-invariant system described by the following transfer function:

H(z) =
z − 1

z
.

(a) This system is known as abackwards Euler differentiator. Why do you think it has been

given this name? Motivate and elaborate.

(b) Determine an expression for the magnitude of the system’s frequency responseH(ejω).

Plot the magnitude over the interval0 ≤ ω ≤ 2π. What kind of filter does this system

represent?

(c) Sketch the phase of the system’s frequency responseH(ejω) over the interval0 ≤ ω ≤ 2π.

(10 marks)

4. Consider two discrete-time signalsx1[n] = δ[n] + 2δ[n− 2] + δ[n− 3] and

x2[n] = 4δ[n] + 3δ[n− 1] + 2δ[n− 3].

(a) Determine and plot the linear convolution ofx1[n] with x2[n].

(b) Determine and plot the 4-point circular convolution ofx1[n] with x2[n].

(c) How would you calculate the linear convolution result using a circular convolution

operation?

(d) Why would you want to implement linear convolution usinga circular convolution

operation?

(10 marks)

5. The following figure shows the pole-zero plot of a system with two poles and two zeros:

1
0.9

Im

Re
π/4

(a) Determine the transfer functionH(z) describing this system assuming that it has a DC gain

of one.

(b) Sketch the magnitude of the frequency response of the system.

(10 marks)
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6. A discrete-time LTI system has the following magnitude and phase response:

1

ω ω00 ππ−π −π

π/2

−π/2

|H(ejω)| ∠H(ejω)

(a) Determine the output if the input is the signalx[n] = ej
5π
2 n.

(b) Determine and sketch the output if the input is the signalx[n] = cos
(

5π
2 n

)

.

(10 marks)

7. (a) Supposexr[n] is a time reversal of the signalx[n], soxr[n] = x[−n]. Show that

Xr(z) = X(1/z) in the z-transform domain.

(b) Now consider the system below:

Time
reversal

Time
reversal

x[n] y[n]xr [n] yr [n]
H(z)

Heff(z)

Show that the effective transfer function linking the inputX(z) to the outputY (z) is

Heff(z) = H(1/z).

(c) If h[n]
Z←→H(z) andY (z) = H(1/z)X(z), find a time-domain expression fory[n] in

terms ofx[n] andh[n].

(10 marks)
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PART B
Answerboth of the following two questions. Each question counts 15 marks.

1. Image processing and computer vision

(a) Assuming that

x(n1, n2) = δ(n1, n2) + δ(n1 − 1, n2) + δ(n1, n2 − 1),

find and ploty(n1, n2) = x(n1, n2) ∗ x(n1, n2).

(b) The two-dimensional convolution of the signalx(n1, n2) with the kernelh(n1, n2) is

given by

y(n1, n2) =
∞
∑

k1=−∞

∞
∑

k2=−∞

h(k1, k2)x(n1 − k1, n2 − k2).

If the kernel is separable then we can writeh(k1, k2) = h1(k1)h2(k2). Show that in

this case the 2-D convolution can be implemented as a set of 1-D convolution

operations, and indicate how the computation required to implement 2-D convolution

can be reduced if the convolution kernel satisfies this separability property.

(c) Explain how the second derivative of an image can be used to formulate an edge

detector. How would you estimate the required first and second derivatives in a

discrete setting? How would you reduce the effect of noise inthe process?
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2. Radar/sonar signal processing

A simplified block diagram of a radar is shown below:

DISPLAY

PC / RADAR
DSP

Modern

hardware

e.g. FPGA I−Q down−converter

I−Q up−converter

Amp

cosωot
−sinωot

−sinωot
cosωot

Q(tn)

I(tn)

Qp(tn)

Ip(tn)

System
Noise

ADC

ADC LPF

LPF

DAC LPF

LPFDAC

Amp BPF

Antenna

Circulator

(a) Draw a neatly labelled block diagram of an equivalentanalytic (complex) signal model of
the radar.

(2 marks)

(b) Illustrate with the aid of sketches of thefrequency spectra, how the signals in the system
are related, particularly illustrate the relationship between thefrequency spectra of the
following signals:

i. the impulse response of the sceneξ(t)↔ ξf (f)

ii. the transmitted rf pulsevtx(t)↔ Vtx(f) and baseband formp(t)↔ P (f)

iii. complex baseband signalvbb(t)↔ Vbb(f).

(3 marks)

(c) A digital signal processing algorithm must be developedfor pulse compression and display
of the echoes received by the radar. The transmitted pulse isa chirp pulse with bandwidth
of 80 MHz, and a centre frequency of 8 GHz. The processor operates on the baseband
signals sampled from the IQ down-converter.

i. What sample rate is required for the signals at the output of the IQ down-converter?
ii. What digital signal processing steps would you carry outto obtain a processed “range

profile” of the scene, considering that you would like to optimizethe signal to noise

ratio?
iii. Calculate the 3dB range resolution in metres.

(5 marks)
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(d) If a deconvolution (inverse) filter is used to process the radar data in (c), sketch the point

target response (both magnitude and phase) as a function of range, that you would expect to

see at the output for a point scatterer at a range of 800m.

(3 marks)

(e) What additional processing steps can one implement to improve the sidelobe levels of the

point target response? Sketch a typical output and indicateclearly the effect of such

processing, compared to the output of the deconvolution filter in (d).

(2 marks)
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Fourier transform properties

Sequencesx[n], y[n] TransformsX(ejω), Y (ejω) Property

ax[n] + by[n] aX(ejω) + bY (ejω) Linearity

x[n− nd] e−jωndX(ejω) Time shift

ejω0nx[n] X(ej(ω−ω0)) Frequency shift

x[−n] X(e−jω) Time reversal

nx[n] j
dX(ejω)

dω Frequency diff.

x[n] ∗ y[n] X(e−jω)Y (e−jω) Convolution

x[n]y[n] 1
2π

R π
−π

X(ejθ)Y (ej(ω−θ))dθ Modulation

Common Fourier transform pairs

Sequence Fourier transform

δ[n] 1

δ[n− n0] e−jωn0

1 (−∞ < n <∞)
P

∞

k=−∞
2πδ(ω + 2πk)

anu[n] (|a| < 1) 1
1−ae−jω

u[n] 1

1−e−jω +
P

∞

k=−∞
πδ(ω + 2πk)

(n + 1)anu[n] (|a| < 1) 1

(1−ae−jω)2

sin(ωcn)
πn X(ejω) =

(

1 |ω| < ωc

0 ωc < |ω| ≤ π

x[n] =

(

1 0 ≤ n ≤ M

0 otherwise
sin[ω(M+1)/2]

sin(ω/2)
e−jωM/2

ejω0n P

∞

k=−∞
2πδ(ω − ω0 + 2πk)

Common z-transform pairs

Sequence Transform ROC

δ[n] 1 All z

u[n] 1
1−z−1 |z| > 1

−u[−n − 1] 1
1−z−1 |z| < 1

δ[n−m] z−m All z except0 or ∞

anu[n] 1

1−az−1 |z| > |a|

−anu[−n − 1] 1

1−az−1 |z| < |a|

nanu[n] az−1

(1−az−1)2
|z| > |a|

−nanu[−n− 1] az−1

(1−az−1)2
|z| < |a|

(

an 0 ≤ n ≤ N − 1,

0 otherwise
1−aNz−N

1−az−1 |z| > 0

cos(ω0n)u[n]
1−cos(ω0)z−1

1−2 cos(ω0)z−1+z−2 |z| > 1

rn cos(ω0n)u[n]
1−r cos(ω0)z−1

1−2r cos(ω0)z−1+r2z−2 |z| > r





FORMULA SHEET V5 EEE4001F 2011
PLEASE REPORT ANY ERRORS TO A.J.W.
Fourier Relationships
x(t) ↔ X(f)

x(t− to) ↔ X(f)e−j2πfto

x(t)e−j2πfot ↔ X(f + fo)

x∗(t) ↔ X∗(−f)
BSa(πβt) ↔ rect( fB )

rect
(

t
τ

)

↔ τSa(πfτ)

δ (t) ↔ 1

For any ‘real’ signalx(t), X(−f) = X∗(f)

Convolution x(t)⊗ h(t) ↔ X(f)H(f)

Radar Equation
Pr =

PtGtσAe

(4πR2)2
whereAe =

Grλ
2

4π

IQ Down-converter
I(t) = [2x(t) cos(ωot)]LPF
Q(t) = [−2x(t) sin(ωot)]LPF
V (t) = I(t) + jQ(t) ↔ V (f) = 2X+(f + fo)

Matched Filter General
H(f) = X∗(f)

Sni
(f)
→ X∗(f) (white noise)

|υo(tpeak)|
2

|no(t)|2 = E
η/2

(white noise)

ANALYTIC RADAR MODEL
Baseband Pulse p(t)
Transmitted υTX(t) = p(t)ej2πfot

EXTENDED TARGET RESPONSE
υRX(t) =

∫∞

τ=−∞
ζ(τ)υTX(t− τ)dτ = ζ(t)⊗ υTX(t)

|ζ(τ)|2 ∝ 1
R4(τ) |β(τ)|

2

VRX(f) = ζ(f)VTX(f)

Baseband Signal

υbb(t) =
[

υRX(t)e−j2πfot
]

⊗ hbb(t) + nbb(t)

υbb(t) =
[

ζ(t)e−j2πfot
]

⊗ p(t)⊗ hbb(t) + nbb(t)

Vbb(f) = ζ(f + fo)P (f)Hbb(f) +Nbb(f)

After Deconvolution/Inverse Filter
V (f) = ζ(f + fo)rect( fB )

υ(t) =
[

ζ(t)e−j2πfot
]

⊗B sin(πBt)
(πBt)

wheresin(πBt)
(πBt)

≡ Sa(πBt)



POINT TARGET RESPONSE
υRX(t) = a1υTX(t− τ) whereτ = 2R

c

a1 ∝

√

GtGrσλ2

(4π)3R4 (narrowband)

υRX(t) =
∑N
i=1 aiυTX(t− τi) whereτi = 2Ri

c

Baseband

υbb(t) = υRX(t) e−jωot ⊗ hbb(t) = ζ p(t− τ) e−jωoτ ⊗ hbb(t)
After deconvolution filtering

υ(t) = a1B Sa(πB[t− τ ])e−j2πfoτ
ψ = arg

{

e−j2πfoτ
}

= arg
{

e−j4πR/λ
}

Resolution
δt3dB ≈ 0.89

B δR3dB = cδt3dB
2 ≈ c

2B (0.89)

Radar Filters
Ideal Spectral Reconstruction (deconvolution/inverse) Filter

HIRF (f) =
1

P (f)Hbb(f)
over−B

2
≤ f ≤ B

2

Matched Filter (MF)HMF (f) =
P ∗(f)
Hbb(f)

≈ P ∗(f)

Doppler Shift fD = −2 dR/dt
λ

MONOCHROME PULSE
RF:υRF (t) = rect

(

t
T

)

cos(2πfot)

Analytic: υTX(t) = rect
(

t
T

)

ej2πfot

Baseband:υbb(t) = rect
(

t
T

)

Frequency Domain
VTX(f) = T sin(πT (f−fo))

πT (f−fo)

Vbb(f) = T sin(πTf)
(πTf)

LINEAR FM CHIRP
RF signalυRF (t) = rect

(

t
T

)

cos
(

2π[fot+
1
2Kt

2]
)

Analytic: υTX(t) = rect
(

t
T

)

ej2π[fot+
1
2Kt

2]

Baseband:υbb(t) = rect
(

t
T

)

ej2π
1
2Kt

2

Sweep range ∆f = KT [Hz]

Instantaneous Frequency
RF:fRF (t) = 1

2π
dψRF (t)

dt = fo +Kt [Hz]

Baseband:fbb(t) = Kt [Hz]

Dispersion factorD = ∆f T = KT 2

Frequency Domain D¿50

|υbb(f)| ≈ rect
(

f
∆f

)

1√
|K|

arg{υbb(f)} =W
{

−j πK f2
}


