EEE4114F: Digital Signal Processing

Class Test
7 March 2019

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 60 minutes.
- An information sheet is attached.

1. (5 marks) The output $y[n]$ of a median filter is given by

$$
y[n]=\operatorname{med}(x[n-1], x[n], x[n+1]) .
$$

Here the median function, med (), lists the 3 samples in descending order and selects the value in the middle of the list. For example, the input $x_{1}[n]$ generates the output $y_{1}[n]$ below:

(a) Is the system causal? Why?
(b) Is the system stable? Why?
(c) Comment on whether the above median filter is linear. Justify your comments and construct a simple relevant example to illustrate your conclusion. For this purpose you may want to use the example pair given above and the input sequence below:

(a) To calculate the output at say $n=10$ we need to know the inputs $x[9], x[10]$, and $x[11]$. Since this last input is in the future the system is not causal.
(b) The output at any instant is always generated by taking the value of a selected input sample, so every value in $y[n]$ must occur somewhere in $x[n]$. Thus if $|x[n]| \leq B_{x}$ for some B_{x} then we must also have $|y[n]| \leq B_{x}$. Since a bounded input always produces a bounded output (with the same bound), the system is stable.
(c) The following input-output pairs can be established:

Since we observe that $y[n] \neq y_{1}[n]+y_{2}[n]$ the system is not additive, and therefore not linear.
2. (5 marks) Let $x[n]$ an $v[n]$ be defined as follows:

$$
x[n]=\delta[n-1]-\delta[n+1] \quad \text { and } \quad v[n]=a \delta[n]+b \delta[n-1]+c \delta[n-2] .
$$

Suppose now that $y[n]=v[n] * x[n]$ gives

$$
y[n]=-\delta[n+1]-2 \delta[n]+2 \delta[n-2]+\delta[n-3] .
$$

(a) Sketch the signals involved.
(b) Specify values for a, b, and c
(a) Plots of the signals are as follows:

(b) It might be easier to solve via graphical convolution, but the answer can also be found algebraically:

$$
\begin{aligned}
y[n] & =x[n] * v[n]=(\delta[n-1]-\delta[n+1]) *(a \delta[n]+b \delta[n-1]+c \delta[n-2]) \\
& =a \delta[n-1]+b \delta[n-2]+c \delta[n-3]-a \delta[n+1]-b \delta[n]-c \delta[n-1] \\
& =-a \delta[n+1]-b \delta[n]+(a-c) \delta[n-1]+b \delta[n-2]+c \delta[n-3] .
\end{aligned}
$$

By inspection we observe that $a=1, b=2$, and $c=1$.
3. (5 marks) Consider the discrete LTI system represented by

$$
y[n]=x[n]-x[n-1]
$$

where $x[n]$ and $y[n]$ are the input and output respectively.
(a) Determine and plot the impulse response $h[n]$. Is the system stable?
(b) Determine and plot the step response corresponding to $x[n]=u[n]$.
(c) Find $H\left(e^{j \omega}\right)$ and plot its magnitude.
(d) Determine and plot the response to the input $x[n]=(-1)^{n}$.
(a) The impulse response $h[n]$ is the output when the input is $x[n]=\delta[n]$, so $h[n]=\delta[n]-\delta[n-1]$. Since $\sum_{n=-\infty}^{\infty}|h[n]|=2<\infty$ the system is stable.
(b) When the input is $x[n]=u[n]$ then the output will be $y[n]=u[n]-u[n-1]=\delta[n]$.
(c) The frequency response is

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty}(\delta[n]-\delta[n-1]) e^{-j \omega n}=1-e^{-j \omega}=e^{-j \omega / 2}\left(e^{j \omega / 2}-e^{-j \omega / 2}\right) \\
& =2 j e^{-j \omega / 2} \sin (\omega / 2)
\end{aligned}
$$

so $\left|H\left(e^{j \omega}\right)\right|=2|\sin (\omega / 2)|$. Plot as follows:

(d) The response to $x[n]=(-1)^{n}=e^{j \pi n}$ will be $y[n]=H\left(e^{j \pi}\right) e^{j \pi n}=2 e^{j \pi n}=2(-1)^{n}$, as follows:

4. (5 marks) A LTI system has a step response of

$$
g[n]=n\left(\frac{1}{2}\right)^{n} u[n] .
$$

In other words, when the input is $x[n]=u[n]$ then the output is $y[n]=g[n]$ above.
(a) Is the system causal? Why?
(b) Find the Fourier transform of $g[n]$.
(c) Find an expression for its impulse response. You may want to use the fact that $u[n]-u[n-1]=\delta[n]$.
(a) The system is causal because the impulse response is right-sided.
(b) By applying the frequency differentiation property to the pair

$$
(1 / 2)^{n} u[n] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad\left(1-1 / 2 e^{-j \omega}\right)^{-1}
$$

we find

$$
\begin{aligned}
G\left(e^{j \omega}\right) & =j \frac{d}{d \omega}\left(1-1 / 2 e^{-j \omega}\right)^{-1}=-j\left(1-1 / 2 e^{-j \omega}\right)^{-2} 1 / 2 j e^{j \omega} \\
& =\frac{1 / 2 e^{j \omega}}{\left(1-1 / 2 e^{-j \omega}\right)^{2}}
\end{aligned}
$$

(c) We are given that $u[n] \longrightarrow g[n]$ is a valid input-output pair. From time invariance $u[n-1] \longrightarrow g[n-1]$ is also a valid pair. By linearity

$$
u[n]-u[n-1] \longrightarrow g[n]-g[n-1]
$$

is valid, so

$$
\delta[n] \longrightarrow g[n]-g[n-1]=n\left(\frac{1}{2}\right)^{n} u[n]-(n-1)\left(\frac{1}{2}\right)^{n-1} u[n-1]
$$

gives the impulse response.

Discrete-time Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d X}\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n_{x[n]}}$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$x\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	${ }_{j} \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{j \omega}\right)^{j \omega}\left(e^{j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common discrete-time Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	
$u[n]$	$\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$x\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Z-transform properties

Sequences $x[n], y[n]$	Transforms $X(z), Y(z)$	ROC	Property
$a x[n]+b y[n]$	$a X(z)+b Y(z)$	ROC contains $R_{x} \cap R_{y}$	Linearity
$x\left[n-n_{d}\right]$	$z^{-n_{d X(}(z)}$	$\mathrm{ROC}=R_{x}$	Time shift
$z_{0}^{n x[n]}$	$x\left(z / z_{0}\right)$	$\mathrm{ROC}=\left\|z_{0}\right\| R_{x}$	Frequency scale
$x^{*}[-n]$	$\mathrm{x}^{*}\left(1 / z^{*}\right)$	ROC $=\frac{1}{R_{x}}$	Time reversal
$n x[n]$	$-z \frac{d X(z)}{d z}$	$\mathrm{ROC}=R_{x}$	Frequency diff.
$x[n] * y[n]$	$X(z) Y(z)$	ROC contains $R_{x} \cap R_{y}$	Convolution
$x^{*}[n]$	$X^{*}\left(z^{*}\right)$	$\mathrm{ROC}=R_{x}$	Conjugation

Common z-transform pairs

Sequence	Transform	ROC
${ }^{\delta[n]}$	${ }_{1}^{1}$	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z-1}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1-a z^{-1}}{1-a z z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{\frac{a z-1}{}}{(1-a z-1)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N}-N}{1-a z-1}$	$\|z\|>0$
$\cos \left(\omega_{0}{ }^{n}\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>\|r\|$

