EEE4001F: Digital Signal Processing Class Test
 13 April 2017

Name:
Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.
- An information sheet is attached.

1. (5 marks) The input $x[n]$ and output $y[n]$ of a system are linked by the relation

$$
y[n]=T\{x[n]\}=x[-n] .
$$

Answer the following questions, giving reasons:
(a) Is the system additive?
(b) Is the system homogeneous?
(c) Is the system linear?
(d) Is the system time invariant?
(e) Is the system causal?
2. (5 marks) This question deals with convolution and time reversal.
(a) Consider the signals below:

Find $y[n]=x_{1}[n] * x_{2}[n]$.
(b) Prove the time reversal property for the z-transform: if $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$ then $x[-n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(1 / z)$.
(c) Suppose $g[n]=x[n] * x_{r}[n]$, where $x_{r}[n]=x[-n]$ is the time reversal of $x[n]$. Show that $g[n]$ is symmetric around the origin, or $g[n]=g[-n]$.
3. (5 marks) A lowpass filter is described by the following system function:

$$
H(z)=\frac{1-a}{1-a z^{-1}} \text { with ROC }|z|>|a| .
$$

(a) Give an expression for the impulse response of the filter.
(b) Give an expression for the frequency response of the filter. What requirements are there on a for this to exist?
(c) Determine the value of the coefficient a such that the filter has a -3 dB cutoff frequency of $\omega=\pi / 4$ radians per sample.
4. (5 marks) The input to an anticausal LTI system is

$$
x[n]=u[-n-1]+(1 / 2)^{n} u[n] .
$$

The Z-transform of the output of the system is

$$
Y(z)=\frac{-\frac{1}{2} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)}
$$

(a) Determine the system function $H(z)$ and specify the ROC.
(b) Show that the ROC of $Y(z)$ is $1 / 2<|z|<1$ and find the time-domain output $y[n]$.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d}} X\left(e^{j \omega}\right)$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1 \quad(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
$\begin{gathered} \cos \left(\omega_{0} n\right) u[n] \\ r^{n} \cos \left(\omega_{0} n\right) u[n] \end{gathered}$	$\begin{gathered} \frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}} \\ \frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}} \end{gathered}$	$\|z\|>1$ $\|z\|>\|r\|$

