EEE4001F: Digital Signal Processing

Class Test 1
11 March 2016

Name:

Student number:

1. (5 marks) A discrete-time system is governed by the following relation:

$$
y[n]=\sum_{k=0}^{2} x[n-k]+x[0]
$$

(a) Find the output when the input is $x_{1}[n]=u[n]$.
(b) Find the output when the input is $x_{2}[n]=u[n-1]$.
(c) Is the system time invariant?

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions
- You have 45 minutes.
- An information sheet is attached.

2. (5 marks) Determine the DTFT of the sequence $x[n]=\alpha^{n} u[-n-1]$ for $|\alpha|>1$.
3. (5 marks) Suppose a sequence $x[n]$ has DTFT $X\left(e^{j \omega}\right)$. Find the time-domain inverses of each of the following:
(a) $Y_{1}\left(e^{j \omega}\right)=2 X\left(e^{-j\left(\omega-\omega_{0}\right)}\right)$, and
(b) $Y_{2}\left(e^{j \omega}\right)=3 e^{j 4 \omega} X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$.

Express your answers in terms of $x[n]$.
4. (5 marks) Consider two discrete-time systems with the following impulse responses:

$$
h_{1}[n]=\delta[n]-\delta[n-1] \quad \text { and } \quad h_{2}[n]=u[n]
$$

(a) Are the systems causal? Why?
(b) Using time-domain reasoning show that the systems are inverses of one another.
(c) Draw pole-zero plots of the system functions in each case.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d}} X\left(e^{j \omega}\right)$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

	Sequence	Transform	ROC
	$\delta[n]$	1	All z
	$u[n]$	$\frac{1}{1-z-1}$	$\|z\|>1$
	$-u[-n-1]$	$\frac{1}{1-z-1}$	$\|z\|<1$
	$\delta[n-m]$	z^{-m}	All z except 0 or ∞
	$a^{n} u[n]$	$\frac{1}{-a z-1}$	$\|z\|>\|a\|$
	$-a^{n} u[-n-1]$	$\frac{1}{1-a z-1}$	$\|z\|<\|a\|$
	$n a^{n} u[n]$		$\|z\|>\|a\|$
	$-n a^{n} u[-n-1]$	$\frac{a z-1}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\left\{\begin{array}{l} a^{n} \\ 0 \end{array}\right.$	$\begin{aligned} & 0 \leq n \leq N-1, \\ & \text { otherwise } \end{aligned}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
	$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
	$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>\|r\|$

