EEE4001F: Digital Signal Processing

Class Test 1

11 March 2016

Name:

Student number:

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.
- An information sheet is attached.

1. (5 marks) A discrete-time system is governed by the following relation:

$$y[n] = \sum_{k=0}^{2} x[n-k] + x[0].$$

- (a) Find the output when the input is $x_1[n] = u[n]$.
- (b) Find the output when the input is $x_2[n] = u[n-1]$.
- (c) Is the system time invariant?

2. (5 marks) Determine the DTFT of the sequence $x[n] = \alpha^n u[-n-1]$ for $|\alpha| > 1$.

3. (5 marks) Suppose a sequence x[n] has DTFT $X(e^{j\omega})$. Find the time-domain inverses of each of the following:

(a) $Y_1(e^{j\omega}) = 2X(e^{-j(\omega-\omega_0)})$, and

(b)
$$Y_2(e^{j\omega}) = 3e^{j4\omega}X(e^{j(\omega-\omega_0)}).$$

Express your answers in terms of x[n].

4. (5 marks) Consider two discrete-time systems with the following impulse responses:

 $h_1[n] = \delta[n] - \delta[n-1]$ and $h_2[n] = u[n]$.

(a) Are the systems causal? Why?

- (b) Using time-domain reasoning show that the systems are inverses of one another.
- (c) Draw pole-zero plots of the system functions in each case.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n - n_d]$	$e^{-j\omega n_d} X(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n - m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r