EEE4001F: Digital Signal Processing

Class Test 1

11 March 2016

TN T		
1.	ame	•
T 1	ame	

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.
- An information sheet is attached.

1. (5 marks) A discrete-time system is governed by the following relation:

$$y[n] = \sum_{k=0}^{2} x[n-k] + x[0].$$

- (a) Find the output when the input is $x_1[n] = u[n]$.
- (b) Find the output when the input is $x_2[n] = u[n-1]$.
- (c) Is the system time invariant?

2. (5 marks) Determine the DTFT of the sequence $x[n] = \alpha^n u[-n-1]$ for $|\alpha| > 1$.

- 3. (5 marks) Suppose a sequence x[n] has DTFT $X(e^{j\omega})$. Find the time-domain inverses of each of the following:
 - (a) $Y_1(e^{j\omega}) = 2X(e^{-j(\omega-\omega_0)})$, and
 - (b) $Y_2(e^{j\omega}) = 3e^{j4\omega}X(e^{j(\omega-\omega_0)}).$

Express your answers in terms of x[n].

4. (5 marks) Consider two discrete-time systems with the following impulse responses:

$$h_1[n] = \delta[n] - \delta[n-1]$$
 and $h_2[n] = u[n]$.

- (a) Are the systems causal? Why?
- (b) Using time-domain reasoning show that the systems are inverses of one another.
- (c) Draw pole-zero plots of the system functions in each case.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$rac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$rac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Transform	ROC
1	All z
$\frac{1}{1-z-1}$	z > 1
$\frac{1}{1-z-1}$	z < 1
z^{-m}	All z except 0 or ∞
$\frac{1}{1-az^{-1}}$	z > a
$\frac{1}{1-az-1}$	z < a
	z > a
$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
	$ \frac{1}{1-z^{-1}} \\ \frac{1}{1-z^{-1}} \\ z^{-m} \\ \frac{1}{1-az^{-1}} \\ \frac{1}{1-az^{-1}} \\ \frac{az^{-1}}{(1-az^{-1})^2} \\ \frac{az^{-1}}{(1-az^{-1})^2} \\ \frac{1}{1-az^{-1}} \\ \frac{az^{-1}}{(1-az^{-1})^2} \\ \frac{1-a^Nz^{-N}}{1-az^{-1}} \\ \frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}} \\ 1-r\cos(\omega_0)z^{-1} $