EEE4001F: Digital Signal Processing

Class Test 1

20 March 2015

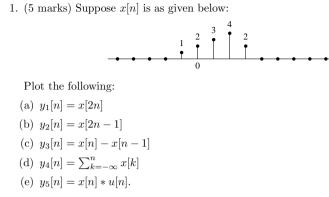
SOLUTIONS

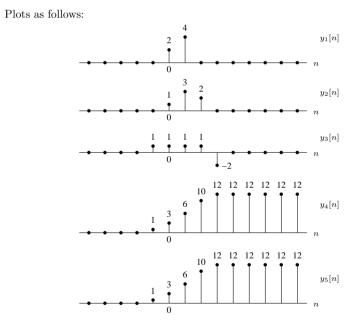
Name:

Student number:

Information

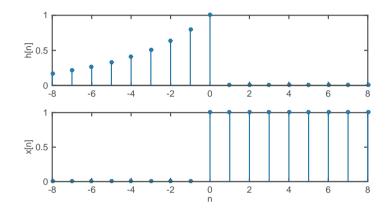
- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- $\bullet\,$ Answer all the questions.
- You have 45 minutes.
- An information sheet is attached.





2. (5 marks) A linear time-invariant system with impulse response $h[n] = a^{-n}u[-n]$ (for 0 < a < 1) is driven by the unit step input x[n] = u[n]. Sketch the signals h[n]and x[n] and find the output y[n] = h[n] * x[n] for values n = 2 and n = -2.

Plots as follows:



The output is

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = \sum_{k=-\infty}^{\infty} a^{-k}u[-k]u[n-k]$$
$$= \sum_{k=-\infty}^{0} a^{-k}u[n-k] = \sum_{m=0}^{\infty} a^{m}u[n+m].$$

Thus

$$y[2] = \sum_{m=0}^{\infty} a^m u[m+2] = \sum_{m=0}^{\infty} a^m = \frac{1}{1-a}$$

and

$$y[-2] = \sum_{m=0}^{\infty} a^m u[m-2] = \sum_{m=2}^{\infty} a^m = \sum_{m=2}^{\infty} a^2 a^{m-2} = a^2 \sum_{m=0}^{\infty} a^m = \frac{a^2}{1-a}.$$

3. (4 marks) Find a closed-form expression for the frequency response $H(e^{j\omega})$ of the FIR filter with impulse response

$$h[n] = a^n (u[n] - u[n - 10]).$$

Is the filter causal? Why?

The required transform is

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} a^n (u[n] - u[n-10])e^{-j\omega n}$$
$$= \sum_{n=0}^{9} (ae^{-j\omega})^n = \frac{1 - (ae^{-j\omega})^N}{1 - (ae^{-j\omega})}.$$

The impulse response is right sided (h[n] = 0 for n < 0) so the system is causal.

4. (6 marks) A causal digital filter with input $\boldsymbol{x}[n]$ and output $\boldsymbol{y}[n]$ is governed by the relationship

$$y[n] = x[n] + x[n-2] + y[n-1] - 0.5y[n-2].$$

(a) Show that the system function can be written as

$$H(z) = \frac{z^2 + 1}{(z - z_0)(z - z_0^*)}$$

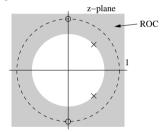
where $z_0 = (1+j)/2$ and z_0^* is the complex conjugate of z_0 .

- (b) Sketch the poles and zeros of this filter in the z-plane.
- (c) Determine an expression for the impulse response of the filter. You may write your solution in terms of undetermined coefficients along with a set of simultaneous equations that specify them.
- (d) Is the filter stable?

(a) Since
$$Y(z) = X(z) + z^{-2}X(z) + z^{-1}Y(z) - 0.5z^{-2}Y(z)$$
 the system function is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1+z^{-2}}{1-z^{-1}+0.5z^{-2}} = \frac{z^2+1}{z^2-z+0.5} = \frac{z^2+1}{(z-z_0)(z-z_0^*)}.$$

(b) Poles at $z = z_0$ and $z = z_0^*$. Zeros where $z^2 = -1$, or at $z = \pm j$.



(c) Using partial fractions the system function can be written as

$$H(z) = \frac{1+z^{-2}}{(1-z_0z^{-1})(1-z_0^*z^{-1})} = A + \frac{B}{(1-z_0z^{-1})} + \frac{B}{(1-z_0^*z^{-1})}.$$

For a causal ROC we have $|z| > |z_0|$ and the inverse is

$$h[n] = A\delta[n] + B(z_0)^n u[n] + C(z_0^*)^n u[n],$$

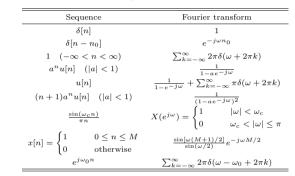
where A = 2, A + B + C = 1, and $A + Bz_0^* + Cz_0 = 0$.

(d) The system is stable because the ROC includes the unit circle.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n - n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs



Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{\frac{1-az^{-1}}{az^{-1}}}{\frac{az^{-1}}{(1-az^{-1})^2}}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2 \cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r \cos(\omega_0) z^{-1}}{1 - 2r \cos(\omega_0) z^{-1} + r^2 z^{-2}}$	z > r