EEE4001F: Digital Signal Processing

Class Test 1

$20 \ \mathrm{March} \ 2015$

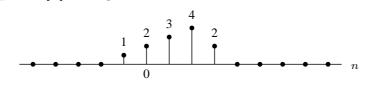
Name:

Student number:

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.
- An information sheet is attached.

1. (5 marks) Suppose x[n] is as given below:



Plot the following:

(a)
$$y_1[n] = x[2n]$$

(b) $y_2[n] = x[2n-1]$

- (c) $y_3[n] = x[n] x[n-1]$
- (d) $y_4[n] = \sum_{k=-\infty}^n x[k]$ (e) $y_5[n] = x[n] * u[n].$

2. (5 marks) A linear time-invariant system with impulse response $h[n] = a^{-n}u[-n]$ (for 0 < a < 1) is driven by the unit step input x[n] = u[n]. Sketch the signals h[n]and x[n] and find the output y[n] = h[n] * x[n] for values n = 2 and n = -2. 3. (4 marks) Find a closed-form expression for the frequency response $H(e^{j\omega})$ of the FIR filter with impulse response

$$h[n] = a^n (u[n] - u[n - 10]).$$

Is the filter causal? Why?

4. (6 marks) A causal digital filter with input x[n] and output y[n] is governed by the relationship

y[n] = x[n] + x[n-2] + y[n-1] - 0.5y[n-2].

(a) Show that the system function can be written as

$$H(z) = \frac{z^2 + 1}{(z - z_0)(z - z_0^*)}$$

where $z_0 = (1+j)/2$ and z_0^* is the complex conjugate of z_0 .

- (b) Sketch the poles and zeros of this filter in the z-plane.
- (c) Determine an expression for the impulse response of the filter. You may write your solution in terms of undetermined coefficients along with a set of simultaneous equations that specify them.
- (d) Is the filter stable?

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shif
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff
$x[n] \ast y[n]$	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
πn	$\prod_{i=1}^{n} (0^{i})^{i} = \begin{cases} 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$\begin{bmatrix} 0 \\ 0 \end{bmatrix} 0$ otherwise	$\sin(\omega/2)$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{\frac{az^{-1}}{az^{-1}}}{\frac{az^{-1}}{(1-az^{-1})^2}}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n) u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r