EEE4001F: Digital Signal Processing

Class Test 1

20 March 2013

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) Given the sequence

 $x[n] = 2\delta[n+3] + (3-n)(u[n] - u[n-3]),$

sketch the following sequences (for $-4 \le n \le 4$):

- (a) $y_1[n] = x[n]$
- (b) $y_2[n] = x[2n-3]$
- (c) $y_3[n] = x[|n|].$

Plots as follows, easily found by just evaluating each signal for each n:

2. (5 marks) A linear time-invariant system has an impulse response given by $h[n] = a^{-n}u[-n], 0 < a < 1$, where u[n] is the unit step sequence

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0. \end{cases}$$

Determine the response to the input x[n] = u[n].

We want to find the output

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = \sum_{k=-\infty}^{\infty} a^{-k}u[-k]u[n-k]$$

for each value of n. Since u[-k] is zero for $k \ge 1$, and is otherwise 1, the sum can be truncated and the expression written as

$$y[n] = \sum_{k=-\infty}^{0} a^{-k} u[n-k] = \sum_{m=0}^{\infty} a^{m} u[n+m],$$

with m = -k. Two cases can now occur. If $n \ge 0$ then u[n+m] in the sum is always one and

$$y[n] = \sum_{m=0}^{\infty} a^m = \frac{1}{1-a}.$$

Alternatively, if n < 0 then the first nonzero term in the sum occurs when m = -n so

$$y[n] = \sum_{m=-n}^{\infty} a^m = a^{-n} + a^{-n+1} + a^{-n+2} + \cdots$$
$$= a^{-n}(1 + a^{-1} + a^{-2} + \cdots) = \frac{a^{-n}}{1 - a}.$$

•

The response is therefore

$$y[n] = \begin{cases} a^{-n} \frac{1}{1-a} & n < 0\\ \frac{1}{1-a} & n \ge 0. \end{cases}$$

- 3. (5 marks) Consider two discrete-time LTI systems which are characterized by their impulse responses $h_1[n] = \delta[n] - \delta[n-1]$ and $h_2[n] = u[n]$.
 - (a) Determine whether these two LTI systems are inverses of each other. Justify your answer.
 - (b) Determine whether these systems are stable, memory-less, and causal. Justify your answer.
 - (a) Suppose x[n] is the input to the first system. The output is then $y_1[n] = h_1[n] * x[n]$. If this signal is put into the second system the output is $z[n] = h_2[n] * u_1[n] = h_2[n] * h_2[n] * v_2[n]$ Here z[n]

$$h_{1} = h_{2}[n] * y_{1}[n] = h_{2}[n] * h_{1}[n] * x[n].$$
 However,

$$h_1[n] * h_2[n] = (\delta[n] - \delta[n-1]) * u[n] = \delta[n] * u[n] - \delta[n-1] * u[n]$$

= u[n] - u[n-1] = $\delta[n]$.

Thus we see that z[n] = x[n] and the systems are inverses of one another.

(b) The impulse response $h_1[n] = \delta[n] - \delta[n-1]$ corresponds to a backward difference system. It is causal because the output at n only depends on the input at n and n-1, none of which are in the future Memory is required to store input at n-1. Since $\sum_{n=-\infty}^{\infty}|h_1[n]|=2<\infty$ the system is stable. The impulse response $h_2[n]=u[n]$ corresponds to an accumulator system and has the following input-output relationship:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]u[n-k] = \sum_{k=-\infty}^{n} x[k]$$

Since the impulse response is right-sided the system is causal, and because the output at time n depends on all inputs up to n the system requires memory. Furthermore, since the unit step input yields an unbounded output the system is not stable (or alternatively, it is not stable since $\sum_{n=-\infty}^{\infty} |h_2[n]| = \sum_{n=0}^{\infty} 1 \to \infty$).

4. (5 marks) An LTI system is described by the input-output relation

$$y[n] = x[n] + 2x[n-1] + x[n-2]$$

- (a) Determine the impulse response h[n]
- (b) Is this a stable system?
- (c) Show that the frequency response of the system can be written as

$$H(e^{j\omega}) = 2e^{-j\omega}(\cos(\omega) + 1).$$

- (d) Plot the magnitude and phase of $H(e^{j\omega})$
- (e) Now consider a new system whose frequency response is $H_1(e^{j\omega}) = H(e^{j(\omega+\pi)})$. Determine $h_1[n]$, the impulse response of the new system.
- (a) The impulse response is the output when the input is $x[n] = \delta[n]$, so

$$h[n] = \delta[n] + 2\delta[n-1] + \delta[n-2].$$

(b) The system is stable because the impulse response is absolutely summable:

$$\sum_{n=-\infty}^{\infty} h[n] = 1+2+1 = 4 < \infty$$

(c) The z-transform of the system is

$$H(z) = 1 + 2z^{-1} + z^{-2} = (1 + z^{-1})(1 + z^{-1})$$

with ROC all z. Evaluating at $z = e^{j\omega}$ gives the Fourier transform:

$$H(e^{j\omega}) = 1 + 2e^{-j\omega} + e^{-j2\omega} = e^{-j\omega}(e^{j\omega} + 2 + e^{-j\omega}) = 2e^{-j\omega}(\cos(\omega) + 1).$$

- (d) The magnitude response is |H(e^{jω})| = 2(cos(ω) + 1) and the phase response is ∠H(e^{jω}) = -ω. Plot is a raised cosine with maximum value 4 for the magnitude and a linear function with slope -1 for the phase.
- (e) If the Fourier transform of h[n] is $H(e^{j\omega})$ then the frequency shift property is

$$e^{j\omega_0 n}h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} e^{j\omega_0 n}h[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty}h[n]e^{-j(\omega-\omega_0)n} = H(e^{j(\omega-\omega_0)}).$$

Taking $\omega_0 = -\pi$ gives

$$h_1[n] = e^{-j\pi n} h[n] = (-1)^n h[n] = \delta[n] - 2\delta[n-1] + \delta[n-2].$$

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-a e^{-j \omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\sin(\omega_c n)$	$X(e^{j\omega}) = \int 1 \qquad \omega < \omega_c$	
πn	$ A(c^{-}) = \begin{cases} 0 & \omega_c < \omega \le \pi \end{cases} $	
$x[n] = \begin{cases} 1 & 0 \le n \le M \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{e} - j\omega M/2$	
$\sum_{n=1}^{\infty} 0$ otherwise	$\sin(\omega/2)$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^N z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n) u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r

_