EEE4001F: Digital Signal Processing

Class Test 1

20 March 2013

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Given the sequence

$$x[n] = 2\delta[n+3] + (3-n)(u[n] - u[n-3]),$$

sketch the following sequences (for $-4 \le n \le 4$):

- (a) $y_1[n] = x[n]$
- (b) $y_2[n] = x[2n-3]$
- (c) $y_3[n] = x[|n|].$

2. (5 marks) A linear time-invariant system has an impulse response given by $h[n] = a^{-n}u[-n]$, 0 < a < 1, where u[n] is the unit step sequence

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0. \end{cases}$$

Determine the response to the input x[n] = u[n].

- 3. (5 marks) Consider two discrete-time LTI systems which are characterized by their impulse responses $h_1[n] = \delta[n] \delta[n-1]$ and $h_2[n] = u[n]$.
 - (a) Determine whether these two LTI systems are inverses of each other. Justify your answer.
- (b) Determine whether these systems are stable, memory-less, and causal. Justify your answer.

4. (5 marks) An LTI system is described by the input-output relation

$$y[n] = x[n] + 2x[n-1] + x[n-2].$$

- (a) Determine the impulse response h[n]
- (b) Is this a stable system?
- (c) Show that the frequency response of the system can be written as

$$H(e^{j\omega}) = 2e^{-j\omega}(\cos(\omega) + 1).$$

- (d) Plot the magnitude and phase of $H(e^{j\omega})$
- (e) Now consider a new system whose frequency response is $H_1(e^{j\omega}) = H(e^{j(\omega+\pi)})$. Determine $h_1[n]$, the impulse response of the new system.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$rac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\tfrac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1 - a N z - N}{1 - a z - 1}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r