EEE4001F: Digital Signal Processing

Class Test 2
20 April 2012

Name:

Student number:

1. (5 marks) An analog signal $x_{a}(t)$ is known to have no frequency content higher than 1000 Hz . We sample $x_{a}(t)$ at $F_{s}=3000 \mathrm{~Hz}$, and the resulting magnitude spectrum, plotted versus discrete frequency ω, is

(a) Sketch the magnitude spectrum (versus discrete frequency ω) that would have resulted had we sampled at $F_{s}=5000 \mathrm{~Hz}$.
(b) What is highest frequency (in Hz) present in $x_{a}(t)$?
(c) What is the lowest sampling frequency that can be used without any aliasing?

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

2. (5 marks) Consider the system below, where z^{-1} represents a unit sample delay:

(a) Show that the transfer function is

$$
H(z)=1-2 z^{-1}+z^{-2}
$$

and determine the impulse response.
(b) Sketch the magnitude response and phase response of the filter. Which frequencies are completely blocked?
3. (5 marks) A linear time invariant system has system function

$$
H(z)=1-2 z^{-1}+z^{-2} .
$$

Determine the output $y[n]$ when the input is

$$
x[n]=3 \cos \left(\frac{\pi}{3} n+\frac{\pi}{6}\right)
$$

Write your answer as $y[n]=A \cos (B n+C)$ for appropriate values of A, B, and C.
4. (5 marks) The DFT operation can be expressed in the following matrix form:

$$
\mathbf{X}=\mathbf{D}_{N} \mathbf{x},
$$

where \mathbf{X} and \mathbf{x} are N-dimensional vectors and \mathbf{D}_{N} is called the DFT matrix.
(a) Write down in full the matrix \mathbf{D}_{4} in terms of the quantity $W_{4}=e^{-j \frac{2 \pi}{4}}$.
(b) Suppose a programming language has a function fft such that $\mathbf{X}=\mathrm{fft}(\mathbf{x})$. Explain how you could use this function to construct the matrix \mathbf{D}_{N}

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d} X\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
u [n]	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z-1}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\left.\frac{\frac{a z-1}{}}{(1-a z-1}\right)^{2}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z-1}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{\frac{1-a^{N} z^{\prime}-N}{1-a z-1}}{}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

