EEE4001F: Digital Signal Processing

Class Test 2

20 April 2012

Student number:

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) An analog signal $x_a(t)$ is known to have no frequency content higher than 1000 Hz. We sample $x_a(t)$ at $F_s=3000$ Hz, and the resulting magnitude spectrum, plotted versus discrete frequency ω , is

- (a) Sketch the magnitude spectrum (versus discrete frequency ω) that would have resulted had we sampled at $F_s=5000~{\rm Hz}.$
- (b) What is highest frequency (in Hz) present in $x_a(t)$?
- (c) What is the lowest sampling frequency that can be used without any aliasing?

2. (5 marks) Consider the system below, where z^{-1} represents a unit sample delay:

(a) Show that the transfer function is

$$H(z) = 1 - 2z^{-1} + z^{-2}$$

and determine the impulse response.

(b) Sketch the magnitude response and phase response of the filter. Which frequencies are completely blocked?

3. (5 marks) A linear time invariant system has system function

$$H(z) = 1 - 2z^{-1} + z^{-2}.$$

Determine the output y[n] when the input is

$$x[n] = 3\cos\left(\frac{\pi}{3}n + \frac{\pi}{6}\right).$$

Write your answer as $y[n] = A\cos(Bn + C)$ for appropriate values of A, B, and C.

4. (5 marks) The DFT operation can be expressed in the following matrix form:

$$\mathbf{X} = \mathbf{D}_N \mathbf{x},$$

where X and x are N-dimensional vectors and D_N is called the DFT matrix.

- (a) Write down in full the matrix \mathbf{D}_4 in terms of the quantity $W_4 = e^{-j\frac{2\pi}{4}}$.
- (b) Suppose a programming language has a function fft such that $\mathbf{X} = \mathtt{fft}(\mathbf{x})$. Explain how you could use this function to construct the matrix \mathbf{D}_N .

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae-j\omega}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az-1}{(1-az-1)^2}$ $\frac{az-1}{az-1}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1 - a ^{N} _{z} - N}{1 - a _{z} - 1}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r \cos(\omega_0) z^{-1}}{1 - 2r \cos(\omega_0) z^{-1} + r^2 z^{-2}}$	z > r