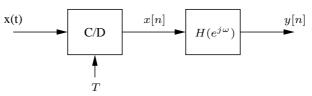
EEE4001F: Digital Signal Processing

Class Test 2

21 April 2011

Name:


Student number:

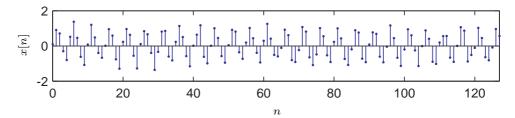
Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) Determine the 8-point DFT of the real-valued sequence $x[n] = \delta[n-3]$. Plot the magnitude and phase of your answer on separate axes, ensuring that the phase lies between $-\pi$ and π .

2. (5 marks) Consider the system below

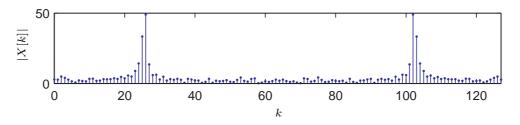
where T = 0.001s and


$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le 0.5\pi \\ 0 & \text{otherwise} \end{cases}$$

for $-\pi \le \omega \le \pi$. Find the output y[n] if the input is $x(t) = \cos(400\pi t) + \cos(600\pi t)$.

3. (5 marks) Find w[n] = x[n] * y[n] with

$$x[n] = e^{j\pi n/3}$$
 and $y[n] = \frac{\sin(\pi(n-5)/2)}{\pi(n-5)}$.


4. (5 marks) Two students want to analyse a signal from a microphone. They digitise a sample of 128 points, obtaining the signal below:

They decide to investigate the apparent periodicity by looking at the signal in the frequency domain. To do this they calculate the DFT

$$X[k] = \sum_{n=0}^{127} x[n] e^{-j\frac{2\pi}{128}kn}$$

for $k = 0, \ldots, 127$, which has the following magnitude plot:

- (a) What is the dominant frequency present in the signal, measured in radians per sample?
- (b) The quantity |X[k]| as calculated is a poor estimate of the spectrum of the microphone signal. Why is this so? What can be done to improve the estimate?

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n - n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shif
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$rac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{\frac{az^{-1}}{az^{-1}}}{\frac{az^{-1}}{(1-az^{-1})^2}}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
	~	

_