EEE4001F: Digital Signal Processing

Class Test 2

22 April 2010

SOLUTIONS

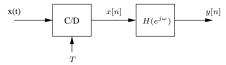
Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Consider the system below



where T = 0.001s and

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| \le 0.5\pi \\ 0 & \text{otherwise} \end{cases}$$

for $-\pi \le \omega \le \pi$. Find the output y[n] if the input is $x(t) = \cos(400\pi t) + \cos(600\pi t)$.

The discretised input is

$$x[n] = x(nT) = \cos(\frac{400}{1000}\pi n) + \cos(\frac{600}{1000}\pi n) = \cos\left(\frac{2\pi}{5}n\right) + \cos\left(\frac{3\pi}{5}n\right)$$
$$= \frac{1}{2}e^{j\frac{2\pi}{5}n} + \frac{1}{2}e^{-j\frac{2\pi}{5}n}\frac{1}{2}e^{j\frac{3\pi}{5}n} + \frac{1}{2}e^{-j\frac{3\pi}{5}n}.$$

In the frequency domain this is

and the filter removes the two impulses at frequencies $\omega=\pm\frac{3\pi}{5}$, and hence the $\cos\left(\frac{3\pi}{5}n\right)$ term. The output is therefore just the remaining term

$$y[n] = \cos\left(\frac{2\pi}{5}n\right).$$

2. (5 marks) Consider the following discrete-time signals x[n] and y[n]:

$$x[n] = 0.2\cos(0.2\pi n)$$
 and $y[n] = 0.2\sin(0.2\pi n)$.

- (a) Show that the 10-point DFT of x[n] is $X[k] = \delta[k-1] + \delta[k-9]$ over the range $k=0,\ldots,9$.
- (b) Assuming that the 10-point DFT of y[n] is $Y[k] = -j(\delta[k-1] \delta[k-9])$, use the DFT to determine a *closed-form* expression for the 10-point circular convolution of x[n] and y[n].
- (a) The DFT is as follows:

$$X[k] = \sum_{n=0}^{9} 0.2 \cos\left(\frac{2\pi}{10}n\right) e^{-j\frac{2\pi}{10}kn} = \frac{0.2}{2} \sum_{n=0}^{9} \left(e^{j\frac{2\pi}{10}n} + e^{-j\frac{2\pi}{10}n}\right) e^{-j\frac{2\pi}{10}kn}$$
$$= \frac{1}{10} \sum_{n=0}^{9} \left(e^{-j\frac{2\pi}{10}(k-1)}\right)^n + \frac{1}{10} \sum_{n=0}^{9} \left(e^{-j\frac{2\pi}{10}(k+1)}\right)^n$$

Over the range $k=0,\ldots,9$ the first term equals zero except when k=1, in which case it equals 1. The second term is similar: one if k=9 and zero otherwise. Thus

$$X[k] = \delta[k-1] + \delta[k-9].$$

(b) Ten-point circular convolution in time corresponds to multiplication in the 10-point DFT domain. Thus we need to take the 10-point DFTs of the signals, multiply them, and find the 10-point inverse DFT of the result.

If w[n] is the 10-point circular convolution of x[n] with y[n], then for $k=0,\ldots,9$ we have

$$W[k] = X[k]Y[k] = -j(\delta[k-1] - \delta[k-9])(\delta[k-1] + \delta[k-9])$$

= $-j(\delta[k-1] - \delta[k-9]).$

We observe that in this case W[k] = Y[k], so the convolution result must be $w[n] = 0.2 \sin(0.2\pi n)$.

3. (5 marks) A stable system is characterised by the following LCCDE:

$$y[n+2] - y[n+1] + \frac{1}{2}y[n] = x[n+1].$$

- (a) Draw a pole-zero plot of the system.
- (b) Roughly sketch the magnitude response of the system.
- (c) Assuming the system response represents a band-pass filter at a frequency of $\pi/4$ radians/sample, what is the centre frequency of the passband if an analog signal is sampled at 12kHz before filtering?
- (a) Taking the z-transform of the LCCDE gives

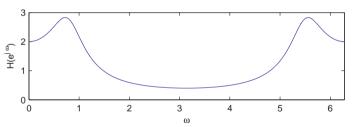
$$z^{2}Y(z) - zY(z) + \frac{1}{2}Y(z) = zX(z),$$

so

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z}{z^2 - z + \frac{1}{2}}.$$

There is one zero in the numerator at z=0. The roots of the denominator occur at $z=\frac{1}{2}\pm\frac{1}{2}j$. The sketch follows.

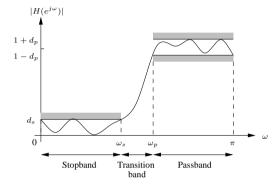
(b) Using graphical methods the magnitude response can be shown to be



(c) For a 12kHz sampling rate the Nyquist frequency is 6kHz and corresponds to $\omega=\pi$. The discrete frequency $\omega=\pi/4$ therefore relates to 6/4=1.5kHz, and this is the center frequency of the analog system.

4. (5 marks) A particular DSP system is sampled at 48kHz, and requires a highpass filter with a passband ripple of 0.1dB, a transition band of 200Hz, stopband attenuation of 60dB, and a cutoff frequency of 1200Hz. Sketch the appropriate design constraints that the filter must satisfy, specifying parameter values where appropriate. Your frequency axis should be in units of radians per sample.

A prototype highpass filter is as follows:



For a sampling rate of 48kHz the highest frequency that can be represented is 24kHz, and this corresponds to $\omega=\pi$ rad/sample.

The filter must attenuate frequencies of less than 1200Hz by at least 60dB. Thus we must have $\omega_s=\frac{\pi}{24000}1200=\pi/20$ rad/sample and $d_s=-60$ dB. Similarly, $\omega_p=\frac{\pi}{24000}(1200+200)$ rad/sample and $d_p=0.1$ dB.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1 - ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r