EEE4001F: Digital Signal Processing

Class Test 2

22 April 2010

SOLUTIONS

Name:
Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Consider the system below

where $T=0.001 \mathrm{~s}$ and

$$
H\left(e^{j \omega}\right)= \begin{cases}1 & |\omega| \leq 0.5 \pi \\ 0 & \text { otherwise }\end{cases}
$$

for $-\pi \leq \omega \leq \pi$. Find the output $y[n]$ if the input is $x(t)=\cos (400 \pi t)+\cos (600 \pi t)$.

The discretised input is

$$
\begin{aligned}
x[n] & =x(n T)=\cos \left(\frac{400}{1000} \pi n\right)+\cos \left(\frac{600}{1000} \pi n\right)=\cos \left(\frac{2 \pi}{5} n\right)+\cos \left(\frac{3 \pi}{5} n\right) \\
& =\frac{1}{2} e^{j \frac{2 \pi}{5} n}+\frac{1}{2} e^{-j \frac{2 \pi}{5} n} \frac{1}{2} e^{j \frac{3 \pi}{5} n}+\frac{1}{2} e^{-j \frac{3 \pi}{5} n} .
\end{aligned}
$$

In the frequency domain this is

and the filter removes the two impulses at frequencies $\omega= \pm \frac{3 \pi}{5}$, and hence the $\cos \left(\frac{3 \pi}{5} n\right)$ term. The output is therefore just the remaining term

$$
y[n]=\cos \left(\frac{2 \pi}{5} n\right) .
$$

2. (5 marks) Consider the following discrete-time signals $x[n]$ and $y[n]$:

$$
x[n]=0.2 \cos (0.2 \pi n) \quad \text { and } \quad y[n]=0.2 \sin (0.2 \pi n) .
$$

(a) Show that the 10 -point DFT of $x[n]$ is $X[k]=\delta[k-1]+\delta[k-9]$ over the range $k=0, \ldots, 9$.
(b) Assuming that the 10 -point DFT of $y[n]$ is $Y[k]=-j(\delta[k-1]-\delta[k-9])$, use the DFT to determine a closed-form expression for the 10-point circular convolution of $x[n]$ and $y[n]$.
(a) The DFT is as follows:

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{9} 0.2 \cos \left(\frac{2 \pi}{10} n\right) e^{-j \frac{2 \pi}{10} k n}=\frac{0.2}{2} \sum_{n=0}^{9}\left(e^{j \frac{2 \pi}{10} n}+e^{-j \frac{2 \pi}{10} n}\right) e^{-j \frac{2 \pi}{10} k n} \\
& =\frac{1}{10} \sum_{n=0}^{9}\left(e^{-j \frac{2 \pi}{10}(k-1)}\right)^{n}+\frac{1}{10} \sum_{n=0}^{9}\left(e^{-j \frac{2 \pi}{10}(k+1)}\right)^{n}
\end{aligned}
$$

Over the range $k=0, \ldots, 9$ the first term equals zero except when $k=1$, in which case it equals 1 . The second term is similar: one if $k=9$ and zero otherwise. Thus

$$
X[k]=\delta[k-1]+\delta[k-9] .
$$

(b) Ten-point circular convolution in time corresponds to multiplication in the 10-point DFT domain. Thus we need to take the 10-point DFTs of the signals, multiply them, and find the 10-point inverse DFT of the result.
If $w[n]$ is the 10 -point circular convolution of $x[n]$ with $y[n]$, then for $k=0, \ldots, 9$ we have

$$
\begin{aligned}
W[k] & =X[k] Y[k]=-j(\delta[k-1]-\delta[k-9])(\delta[k-1]+\delta[k-9]) \\
& =-j(\delta[k-1]-\delta[k-9]) .
\end{aligned}
$$

We observe that in this case $W[k]=Y[k]$, so the convolution result must be $w[n]=0.2 \sin (0.2 \pi n)$.
3. (5 marks) A stable system is characterised by the following LCCDE:

$$
y[n+2]-y[n+1]+\frac{1}{2} y[n]=x[n+1] .
$$

(a) Draw a pole-zero plot of the system.
(b) Roughly sketch the magnitude response of the system.
(c) Assuming the system response represents a band-pass filter at a frequency of $\pi / 4$ radians/sample, what is the centre frequency of the passband if an analog signal is sampled at 12 kHz before filtering?
(a) Taking the z-transform of the LCCDE gives

$$
z^{2} Y(z)-z Y(z)+\frac{1}{2} Y(z)=z X(z)
$$

so

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{z}{z^{2}-z+\frac{1}{2}}
$$

There is one zero in the numerator at $z=0$. The roots of the denominator occur at $z=\frac{1}{2} \pm \frac{1}{2} j$. The sketch follows.
(b) Using graphical methods the magnitude response can be shown to be

(c) For a 12 kHz sampling rate the Nyquist frequency is 6 kHz and corresponds to $\omega=\pi$. The discrete frequency $\omega=\pi / 4$ therefore relates to $6 / 4=1.5 \mathrm{kHz}$, and this is the center frequency of the analog system.
4. (5 marks) A particular DSP system is sampled at 48 kHz , and requires a highpass filter with a passband ripple of 0.1 dB , a transition band of 200 Hz , stopband attenuation of 60 dB , and a cutoff frequency of 1200 Hz . Sketch the appropriate design constraints that the filter must satisfy, specifying parameter values where appropriate. Your frequency axis should be in units of radians per sample.

A prototype highpass filter is as follows:

For a sampling rate of 48 kHz the highest frequency that can be represented is 24 kHz , and this corresponds to $\omega=\pi \mathrm{rad} /$ sample.

The filter must attenuate frequencies of less than 1200 Hz by at least 60 dB . Thus we must have $\omega_{s}=\frac{\pi}{24000} 1200=\pi / 20 \mathrm{rad} / \mathrm{sample}$ and $d_{s}=-60 \mathrm{~dB}$. Similarly, $\omega_{p}=\frac{\pi}{24000}(1200+200) \mathrm{rad} / \mathrm{sample}$ and $d_{p}=0.1 \mathrm{~dB}$.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n} d X\left(e^{j \omega}\right)$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1 \quad(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1 \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a{ }^{2} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

