EEE4001F: Digital Signal Processing

Class Test 1

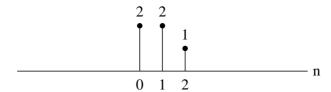
11 March 2010

SOLUTIONS

Name:
Student number:
Information
• The test is closed-book.
• This test has <i>four</i> questions, totalling 20 marks.
• Answer <i>all</i> the questions.

• You have 45 minutes.

1. (5 marks) If x[n] is the signal



then sketch the following:

(a)
$$x_1[n] = -x[n+2]$$

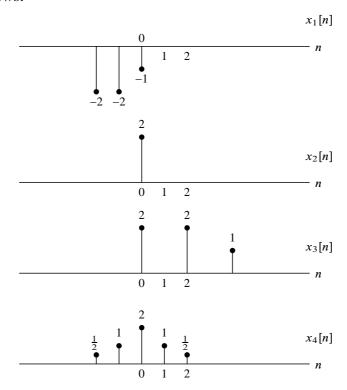
(b)
$$x_2[n] = x[2n+1]$$

(b)
$$x_2[n] = x[2n+1]$$

(c) $x_3[n] = \begin{cases} x[n/2] & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$

(d)
$$x_4[n] = \frac{1}{2}(x[n] + x[-n]).$$

Plots are as follows:



2. (5 marks) A linear system has the relationship

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]g[n-2k]$$

between its input x[n] and its output y[n], where g[n] = u[n] - u[n-4].

- (a) Determine y[n] when $x[n] = \delta[n-1]$.
- (b) Determine y[n] when $x[n] = \delta[n-2]$.
- (c) Is the system LTI?
- (a) Output for $x[n] = \delta[n-1]$ is

$$y[n] = \sum_{k=-\infty}^{\infty} \delta[k-1]g[n-2k] = \sum_{k=-\infty}^{\infty} \delta[k-1]g[n-2(1)]$$
$$= g[n-2] \sum_{k=-\infty}^{\infty} \delta[k-1] = g[n-2].$$

(b) Output for $x[n] = \delta[n-2]$ is

$$y[n] = \sum_{k=-\infty}^{\infty} \delta[k-2]g[n-2k] = \sum_{k=-\infty}^{\infty} \delta[k-2]g[n-2(2)] = g[n-4].$$

(c) From part (a) we have the following input-output pair:

$$x[n] = \delta[n-1] \longrightarrow g[n-2] = y[n].$$

If the system is time invariant then $x[n-1] \longrightarrow y[n-1]$, so we must have $\delta[n-2] \longrightarrow g[n-3]$. But from (b) we see that $\delta[n-2] \longrightarrow g[n-4]$, so time invariance does not hold, and the system is not LTI.

3. (5 marks) Consider two systems described by the following linear constant coefficient difference equations:

$$y[n] = 0.2y[n-1] + x[n] + 0.3x[n-1] + 0.02x[n-2]$$

$$y[n] = x[n] - 0.1x[n-1].$$

Prove that the two systems are equivalent.

Using the Z-transform the first LCCDE can be written as

$$Y(z) = 0.2z^{-1}Y(z) + X(z) + 0.3z^{-1}X(z) + 0.02z^{-2}X(z)$$

so the system function is

$$H_1(z) = \frac{Y(z)}{X(z)} = \frac{1 + 0.3z^{-1} + 0.02z^{-2}}{1 - 0.2z^{-1}} = \frac{(1 - 0.2z^{-1})(1 - 0.1z^{-1})}{1 - 0.2z^{-1}}$$
$$= 1 - 0.1z^{-1} = \frac{z - 0.1}{z}.$$

Since there is only one pole at the origin, the ROC is all z (excluding z=0).

The second LCCDE has an identical system function, so the LCCDEs must represent the same system.

4. (5 marks) The input x[n] and the output y[n] of a causal system obeys the relationship

$$y[n] = x[n] + 0.3y[n-2].$$

Find the impulse response, and determine whether the system is BIBO stable or not.

The Z-transform of the difference equation is

$$Y(z) = X(z) + 0.3z^{-2}Y(z),$$

so the system function is

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - 0.3z^{-2}} = \frac{z^2}{z^2 - 0.3} = \frac{z^2}{(z - \sqrt{0.3})(z + \sqrt{0.3})}$$
$$= \frac{1}{(1 - \sqrt{0.3}z - 1)(1 + \sqrt{0.3}z^{-1})} = \frac{a}{1 - \sqrt{0.3}z - 1} + \frac{b}{1 + \sqrt{0.3}z - 1}.$$

This has two poles at $z = \pm \sqrt{0.3}$, so for a causal system we must have ROC $|z| > \sqrt{0.3}$. This ROC includes the unit circle, so the system is stable. Inverting gives the impulse response

$$h[n] = a(-\sqrt{0.3})^n u[n] + b(\sqrt{0.3})^n u[n].$$

Fourier transform properties

Sequences $x[n]$, $y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n}dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_{\rm O}]$	$e^{-j\omega n_0}$	
1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^nu[n] (a <1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1 - ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$r^n\cos(\omega_0 n)u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r