EEE4001F: Digital Signal Processing

Class Test 2

30 April 2008

SOLUTIONS

Name:
Student number:

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Find w[n] = x[n] * y[n] with

$$x[n] = (-1)^n$$
 and $y[n] = \frac{\sin(\pi n/3)}{\pi n}$.

We can think of w[n] as the output of a system with impulse response y[n] to the input signal x[n]. From the tables of Fourier transform pairs, the frequency response of the system is

$$Y(e^{j\omega}) = \begin{cases} 1 & |\omega| \le \pi/3 \\ 0 & \pi/3 < |\omega| < \pi. \end{cases}$$

Since $x(t) = (-1)^n = e^{j\pi n}$ is a complex exponential of frequency $\omega = \pi$, the output is

$$w[n] = Y(e^{j\pi})e^{j\pi n} = 0.$$

(Alternatively find and sketch $X(e^{j\omega})$ and $Y(e^{j\omega})$, and show that the product $W(e^{j\omega}) = X(e^{j\omega})Y(e^{j\omega})$ is zero.)

2. (5 marks) Consider the following discrete-time signal:

$$x[n] = \begin{cases} \sin(\frac{n\pi}{4}) & \text{when } n/2 \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

Calculate and sketch the 8-point DFT (magnitude and phase) of the first 8 samples of x[n], i.e. $x[0], x[1], \ldots, x[7]$. Show and motivate your calculations.

The only nonzero samples of x[n] over the range 0 to 7 are x[2] = 1 and x[6] = -1. The DFT is therefore

$$X[k] = \sum_{n=0}^{7} x[n] W_8^{kn} = \sum_{n=0}^{7} x[n] e^{-j(\frac{2\pi}{8})kn}$$

$$= e^{-j(\frac{2\pi}{8})2k} - e^{-j(\frac{2\pi}{8})6k} = e^{-j(\frac{\pi}{2})k} - e^{j(\frac{\pi}{2})k}$$

$$= -\frac{2j}{2j} (e^{j(\frac{\pi}{2})k} - e^{-j(\frac{\pi}{2})k}) = -2j \sin(\pi k/2).$$

Therefore

$$X[0] = X[4] = 0$$
 $X[1] = X[5] = -2j = 2e^{-j\pi/2}$
 $X[2] = X[6] = 0$ $X[3] = X[7] = 2j = 2e^{j\pi/2}$.

Magnitude and phase plots are as follows:

3. (5 marks) Consider the following LTI system:

(a) Show that the system function is

$$H(z) = \frac{(z-1)(z+1)}{(z-0.9e^{j\pi/6})(z-0.9e^{-j\pi/6})}.$$

(b) Sketch the magnitude frequency response $|H(e^{j\omega})|$ over the range $0 \le \omega \le 2\pi$. Indicate calculated amplitudes at $\omega = 0$, $\omega = \frac{\pi}{6}$, and $\omega = \pi$.

The difference equation for the system is

$$y[n] = 0.9\sqrt{3}y[n-1] - 0.81y[n-2] + x[n] - x[n-2].$$

By taking z-transforms, the system function is found to be

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1 - z^{-2}}{1 - 0.9\sqrt{3}z^{-1} + 0.81z^{-2}} = \frac{z^2 - 1}{(z - 0.45(\sqrt{3} + j))(z - 0.45(\sqrt{3} - j))}$$
$$= \frac{(z - 1)(z + 1)}{(z - 0.45(2e^{j\pi/6}))(z - 0.45(2e^{-j\pi/6}))} = \frac{(z - 1)(z + 1)}{(z - 0.9e^{j\pi/6})(z - 0.9e^{-j\pi/6})}.$$

which has zeros at $z=\pm 1$ and poles at $z=0.9e^{\pm j\pi/6}$. Graphical methods can be used to find the magnitude response:

Specifically, $H(e^{j0}) = H(e^{j\pi}) = 0$, and $H(e^{j\pi/6}) \approx 10$.

4. (5 marks) One of the simplest filters is a backward-difference system, where

$$y[n] = x[n] - x[n-1].$$

Using sketches, notes, and equations, justify why this is a highpass filter.

The z-transform of the time-domain representation is

$$Y(z) = X(z) - z^{-1}X(z) = X(z)(1 - z^{-1})$$
, so the system function is

$$H(z) = \frac{Y(z)}{X(z)} = 1 - z^{-1}.$$

The frequency response is

$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}} = 1 - e^{-j\omega},$$

so the squared magnitude response is

$$|H(e^{j\omega})|^2 = (1 - e^{-j\omega})(1 - e^{j\omega}) = 1 - e^{j\omega} - e^{-j\omega} + 1$$
$$= 2 - \frac{2}{2}(e^{j\omega} + e^{-j\omega}) = 2 - 2\cos(\omega).$$

Thus we have a highpass filter characteristic:

or

Fourier transform properties

Sequences $x[n]$, $y[n]$	Transforms $X(e^{j\omega})$, $Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d} X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^nu[n]$ $(a <1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1 - ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$ \begin{array}{r} 1-z-1\\ 1\\ 1\\ 1-z-1 \end{array} $	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{\frac{1}{1-az^{-1}}}{\frac{az^{-1}}{(1-az^{-1})^2}}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n\cos(\omega_0 n)u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r