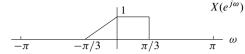
EEE4001F: Digital Signal Processing

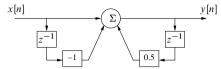
Class Test 1

20 March 2008


Name:

Student number:

Information


- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) A sequence x[n] has a zero-phase DTFT $X(e^{j\omega})$ given below:

Sketch the DTFT of the sequence $y[n] = x[-n]e^{-j\pi n/3}$.

2. (5 marks) Consider the following LTI system:

Determine a closed-form expression for the response y[n] of this system to the following input signal:

$$x[n] = \begin{cases} 1 & n \ge 4 \\ 0 & \text{otherwise} \end{cases}$$

if the system is causal and initially at rest.

3. (5 marks) Consider the following discrete-time signal x[n]:

$$x[n] = \begin{cases} n+1 & 0 \le n \le 3\\ 4 & n \ge 4\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Determine the z-transform X(z) of x[n], and represent it as a ratio of polynomials in z^{-1} .
- (b) What is the region of convergence (ROC) of this z-transform?

4. (5 marks) Consider the continuous-time signal

$$x(t) = \sin(400\pi t + \pi).$$

The discrete-time signal x[n] is obtained by sampling x(t) at $t = n/f_s$ with a sampling frequency $f_s = 1000$ Hz. Which one of the following continuous-time signals will yield the same sample values when sampled at the same sampling instants? Show and motivate your calculations.

- (a) $\sin(600\pi t)$
- (b) $-\sin(1000\pi t)$
- (c) $\sin(1400\pi t)$
- (d) $\sin(1600\pi t)$

Fourier transform properties

Sequences $x[n]$, $y[n]$	Transforms $X(e^{j\omega})$, $Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d} X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^nu[n]$ (a < 1)	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1 - ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{\frac{1}{1-z^{-1}}}{\frac{1}{1-z^{-1}}}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^nu[n]$	$\frac{1}{1-az-1}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{\frac{1}{1-az-1}}{\frac{az-1}{(1-az-1)^2}}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r