EEE4001F: Digital Signal Processing

Class Test 2

26 April 2007

Name:		
Student number:		
	Information	

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) A stable LTI system is characterised by the following z-transform:

$$H(z) = \frac{1 + z^{-2}}{1 + 0.81z^{-2}}$$

- (a) Sketch the magnitude of the frequency response
- (b) Calculate the magnitude and the phase of the frequency response at 1/2 the sampling frequency.

2. (5 marks) The following signals are defined on the interval n = 0, ..., 7:

$$x_1[n] = (1/2)^n$$
 $x_2[n] = (-1)^n$.

- (a) Find a closed-form expression for the 8-point DFT of $x_1[n]$.
- (b) Find the 8-point DFT of $x_2[n]$.
- (c) Using above results, compute the 8-point circular convolution $y[n] = x_1[n] \otimes x_2[n]$.

3.	3. (5 marks) Digital audio tape (DAT) drives use a sampling frequency of 48 kHz. Condisks (CDs) use 44.1 kHz. Explain in detail how you would transfer a recording from DAT to a CD. Give reasons and quantify any required parameters.		

4. (5 marks) Design a length-5 FIR bandpass filter with an antisymmetric impulse response h[n] (i.e. h[n] = -h[4-n] for $0 \le n \le 4$) satisfying the following magnitude response:

$$|H(e^{j\pi/4})| = 0.5$$
 and $|H(e^{j\pi/2})| = 1$.

(Hint: calculate h[n] and note that h[2] = 0.)