EEE4001F: Digital Signal Processing

Class Test 1

22 March 2007

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Determine the impulse response of the LTI system described by the difference equation

$$
y[n]-0.2 y[n-1]=x[n]+0.5 x[n-1]
$$

under the assumption that it is causal. Is the system stable?

The z -transform of the difference equation is

$$
Y(z)\left(1-0.2 z^{-1}\right)=X(z)\left(1+0.5 z^{-1}\right)
$$

so

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1+0.5 z^{-1}}{1-0.2 z^{-1}}=\frac{z+0.5}{z-0.2}
$$

and the system has a pole at $z=0.2$. The ROC for a causal system wil be outside this pole: $|z|>0.2$. This ROC includes the unit circle, so $h[n]$ has a Fourier transform, is absolutely summable, and therefore corresponds to a stable system.
2. (5 marks) Which of the impulse responses

$$
\begin{aligned}
& h_{1}[n]=3 \delta[n-2]+\delta[n-4] \\
& h_{2}[n]=u[n-3]-u[n+5]
\end{aligned}
$$

describe causal, stable, LTI processors? Give reasons for your answers. Sketch the step response of each system.

The impulse responses are

Since $h_{1}[n]=0$ for $n<0$, it is the impulse response of a causal system. The system described by $h_{2}[n]$ is not causal: the output when the input is a unit impulse at the origin starts at $n=-5$.
Both systems are stable, since their impulse responses are absolutely summable:

$$
S_{1}=\sum_{n=-\infty}^{\infty}\left|h_{1}[n]\right|=4 \quad \text { and } \quad S_{2}=\sum_{n=-\infty}^{\infty}\left|h_{2}[n]\right|=8
$$

Thus both systems are stable.
The step response is the convolution of the impulse response with the unit step:

$$
y[n]=\sum_{k=-\infty}^{\infty} h[k] u[n-k]=\sum_{k=-\infty}^{n} h[k] u[n-k]=\sum_{k=-\infty}^{n} h[k],
$$

which is just the accumulated signal. Thus the respective step responses are

3. (5 marks) Convolve the signals

$$
x_{1}[n]=\delta[n]-\delta[n-2]+\delta[n-3] \quad \text { and } \quad x_{2}[n]=2 \delta[n-1]+\delta[n-2]-\delta[n-3]
$$

using the z -transform.

The signals in the z -domain are $X_{1}(z)=1-z^{-2}+z^{-3}$ and $X_{2}(z)=2 z^{-1}+z^{-2}-z^{-3}$. The convolution is the product

$$
\begin{aligned}
Y(z) & =X_{1}(z) X_{2}(z)=\left[1-z^{-2}+z^{-3}\right]\left[2 z^{-1}+z^{-2}-z^{-3}\right] \\
& =2 z^{-1}+z^{-2}-3 z^{-3}+z^{-4}+2 z^{-5}-z^{-6}
\end{aligned}
$$

which inverts to

$$
y[n]=2 \delta[n-1]+\delta[n-2]-3 \delta[n-3]+\delta[n-4]+2 \delta[n-5]-\delta[n-6] .
$$

4. (5 marks) Suppose $y[n]$ is the output of an LTI system when $x[n]$ is the input:

Find the response of the system to the input

The response to $x[n]$ is $y[n]$. Since the system is LTI, the response to $2 x[n]$ is $2 y[n]$ and the response to $-2 x[n-1]$ is $-2 y[n-1]$. But observe that the signal $x_{2}[n]$ is just $2 x[n]-2 x[n-1]$, so the output must be the sum $2 y[n]-2 y[n-1]$.

