EEE4001F: Digital Signal Processing

Class Test 2
15 May 2006

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) Consider the z -transform

$$
G(z)=\frac{\left(z^{2}+0.2 z+0.1\right)\left(z^{2}-z+0.5\right)}{\left(z^{2}+0.3 z-0.18\right)\left(z^{2}-2 z+4\right)} .
$$

What are the possible regions of convergence for this transform? Discuss the type of inverse z-transform (left-sided, right-sided, two-sided, stable, unstable, etc.) associated with each of the ROCs. It is not necessary to compute the exact inverse transform.

By factoring the denominator polynomial we see that the four poles are at $-0.6,0.3,1 \pm j \sqrt{3}$. Since $|1 \pm j \sqrt{3}|=2$, there are four possible regions of convergence: $|z|<0.3,0.3<|z|<0.6,0.6<|z|<2$, and $|z|>2$. For each ROC the inverse transforms have the following properties:
(a) $z<0.3$: ROC inside innermost pole and does not include unit circle, so left-sided unstable inverse.
(b) $0.3<|z|<0.6$: ROC neither inside nor outside and does not include unit circle, so two-sided unstable inverse.
(c) $0.6<|z|<2$: ROC neither inside nor outside but does include unit circle, so two-sided stable inverse.
(d) $|z|>2$: ROC outside outermost pole and does not include unit circle, so right-sided unstable inverse.
2. (5 marks) Determine the z-transforms of the following sequences and their respective ROCs:
(a) $x_{1}[n]=\alpha^{n} u[n-2]$
(b) $x_{2}[n]=\alpha^{n} u[-n-3]$.
(a) The z -transform is

$$
\begin{aligned}
X_{1}(z) & =\sum n=-\infty^{\infty} \alpha^{n} u[n-2] z^{-n}=\sum_{n=2}^{\infty} \alpha^{n} z^{-n}=\sum_{n=2}^{\infty}\left(\alpha z^{-1}\right)^{n} \\
& =\sum_{n=0}^{\infty}\left(\alpha z^{-1}\right)^{n}-\left(\alpha z^{-1}\right)^{0}-\left(\alpha z^{-1}\right)^{1}=\frac{1}{1-\alpha z^{-1}}-\left(1+\alpha z^{-1}\right)
\end{aligned}
$$

as long as $\left|\alpha z^{-1}\right|<1$ (so the ROC is $|z|>|\alpha|$). This can be simplified to give the required transform

$$
X_{1}(z)=\frac{\alpha^{2} z^{-2}}{1-\alpha z^{-1}} \quad|z|>|\alpha|
$$

(b) The z -transform is

$$
\begin{aligned}
X_{1}(z) & =\sum_{m=-\infty^{\infty} \alpha^{n} u[-n-3] z^{-n}=\sum m=-\infty^{\infty} \alpha^{-m} u[m-3] z^{m}} \\
& =\sum_{m=3}^{\infty} \alpha^{-m} z^{m}=\sum_{m=0}^{\infty}\left(\alpha^{-1} z\right)^{m}-\left[1+\left(\alpha^{-1} z\right)+\left(\alpha^{-1} z\right)^{2}\right] \\
& =\frac{1}{1-\alpha^{-1} z}-\left[1+\left(\alpha^{-1} z\right)+\left(\alpha^{-1} z\right)^{2}\right]
\end{aligned}
$$

with the ROC is $|z|<|\alpha|)$. Simplify if required.
3. (5 marks) Suppose $X[k]$ is the N-point DFT of $x[n]$. If $x[n]$ is real, what symmetry does this imply on the elements of $X[k]$? Recall that if a is a real number, then $a=a^{\star}$.

Taking the conjugate of the DFT relation

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} k n}
$$

and applying $x[n]=x^{*}[n]$ we get

$$
\begin{aligned}
X^{*}[k] & =\sum_{n=0}^{N-1} x^{*}[n] e^{j \frac{2 \pi}{N} k n}=\sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi}{N} k n} e^{-j \frac{2 \pi}{N} N n} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N}(N-k) n}=X[n-k] .
\end{aligned}
$$

Thus the sequence $X[k]$ is conjugate symmetric.
4. (5 marks) Determine an expression for the frequency response $H\left(e^{j \omega}\right)$ of a causal LTI discrete-time system characterised by the input-output relation

$$
y[n]=x[n]+\alpha y[n-R], \quad|\alpha|<1,
$$

where $x[n]$ is the input and $y[n]$ the output to the system. How many peaks and dips of the magnitude response occur in the range $0 \leq \omega<\pi$, and what are their locations?

Taking the z-transform of the expression we arrive at the system function

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-\alpha z^{-R}} .
$$

This has poles whenever $1-\alpha z^{-R}=0$, or when $z^{R}=\alpha$. This is a polynomial of order R, and has R roots uniformly spaced around the circle in the z-plane with radius $\alpha^{1 / R}-$ thus the poles are at $z=\alpha^{1 / R} e^{j(2 \pi / R) k}$ for $k=0,1, \ldots, R-1$.
Putting $z=e^{j \omega}$ and drawing the poles in the z-plane for some values of R we readily see that the peaks in the transfer function will be at angles $\omega=(2 \pi / R) k$ for integer k, and that the dips will be halfway in between these. For example, the case of $R=6$ is shown below:

