EEE401F: Digital Signal Processing

Class Test 2
25 May 2005

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) A signal has the spectrum depicted below:

(a) Determine the minimum sampling frequency required for perfect reconstruction.
(b) Sketch the spectrum of the sampled signal if the sampling rate is 16 kHz .

For reconstruction we require samples to be taken at twice the highest frequency present in the signal, or 20 kHz .
The spectrum of the discretised signal is as follows:

2. (5 marks) Sketch the magnitude transfer functions of the systems with the following z-plane representations:

Using graphical methods you should obtain something like the following results:

The numbers in these plots are for poles at $0.8 e^{ \pm j \pi / 6}$ and 0.8 in the first case, and $0.8 e^{ \pm j \pi / 4}$ in the second. However, Since no numbers were given I cannot expect numerical correctness - all that is required is the basic characteristics.
3. (5 marks) Explain, with examples and sketches, why windowing is important in spectrum estimation.
4. (5 marks) Consider the sequence $x[n]=4 \delta[n]+3 \delta[n-1]+2 \delta[n-2]+\delta[n-3]$, and let $X[k]$ be the 6 -point DFT of $x[n]$.
(a) Find find finite-length sequence $y[n]$ that has a 6-point DFT $Y[k]=W_{6}^{4 k} X[k]$.
(b) Find the DFT of the 6-point circular convolution of $x[n]$ with itself.

$$
X[k]=\sum_{n=0}^{5} x[n] W_{6}^{k n}=4 W_{6}^{0 k}+3 W_{6}^{1 k}+2 W_{6}^{2 k}+W_{6}^{3 k},
$$

so

$$
\begin{aligned}
Y[k] & =W_{6}^{4 k} X[k]=4 W_{6}^{4 k}+3 W_{6}^{5 k}+2 W_{6}^{6 k}+W_{6}^{7 k} \\
& =2 W_{6}^{0 k}+W_{6}^{1 k}+4 W_{6}^{4 k}+3 W_{6}^{5 k} .
\end{aligned}
$$

and

$$
y[n]=2 \delta[n]+\delta[n-1]+4 \delta[n-4]+3 \delta[n-5] .
$$

Six-point circular convolution in the time domain corresponds to multiplication in the 6-point DFT domain. If $w[n]=x[n] ® x[n]$ is the circular convolution for $N=6$, then in the DFT domain we have

$$
W[k]=X[k] X[k]=\left(4 W_{6}^{0 k}+3 W_{6}^{1 k}+2 W_{6}^{2 k}+W_{6}^{3 k}\right)\left(4 W_{6}^{0 k}+3 W_{6}^{1 k}+2 W_{6}^{2 k}+W_{6}^{3 k}\right)
$$

$$
=17 W_{6}^{0 k}+15 W_{6}^{1 k}+25 W_{6}^{2 k}+20 W_{6}^{3 k}+10 W_{6}^{4 k}+4 W_{6}^{5 k}
$$

