EEE401F Class Test

11 May 2004

Name:
Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) An N-sample signal $x[n]$ has the DFT $X[k]$. Write down expressions for the DFTs of the signals
(a) $x\left[((n-2))_{N}\right]$
(b) $2 x[n]+x\left[((n+1))_{N}\right]$
(c) $x\left[((-n))_{N}\right]$.
(a) A circular shift to the right by two samples corresponds to multiplication by $W_{n}^{2 k}$ in the DFT domain: the transform of the unshifted signal is

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n}=x[0] W_{N}^{0 k}+x[1] W_{N}^{1 k}+\cdots+x[N-1] W_{N}^{(N-1) k},
$$

and the shifted signal

$$
\begin{aligned}
X^{\prime}[k] & =\sum_{n=0}^{N-1} x\left[((n-2))_{N}\right] W_{N}^{k n} \\
& =x[N-2] W_{N}^{0 k}+x[N-1] W_{N}^{1 k}+x[0] W_{N}^{2 k}+x[1] W_{N}^{3 k}+\cdots \\
& =W_{N}^{2 k}\left(x[0] W_{N}^{0 k}+x[1] W_{N}^{1 k}+\cdots+x[N-2] W_{N}^{(N-2) k}+x[N-1] W_{N}^{(N-1) k}\right) \\
& =W_{N}^{2 k} X[k] .
\end{aligned}
$$

(b) The DFT of the shifted signal $x\left[((n+1))_{N}\right]$ is $W_{N}^{-k} X[k]$, using an argument analogous to that used for the previous result. From the linearity of the DFT the transform of the required signal is therefore

$$
X^{\prime}[k]=2 X[k]+W_{N}^{-k} X[k]=\left(2+W_{N}^{-k}\right) X[k] .
$$

(c) Apologies - the question should have read $x^{*}\left[((-n))_{N}\right]$, and in retrospect this third part made it rather too long.
$X^{\prime}[k]=\sum_{n=0}^{N-1} x^{*}\left[((-n))_{N}\right] W_{N}^{k n}=x^{*}[0] W_{N}^{0 k}+x^{*}[N-1] W_{N}^{1 k}+\cdots+x^{*}[1] W_{N}^{(N-1) k}$, so

$$
\begin{aligned}
\left(X^{\prime}[k]\right)^{*} & =x[0] W_{N}^{-0 k}+x[N-1] W_{N}^{-1 k}+\cdots+x[1] W_{N}^{-(N-1) k} \\
& =x[0] W_{N}^{0 k}+x[1] W_{N}^{1 k}+\cdots+x[N-1] W_{N}^{(N-1) k}=X[k]
\end{aligned}
$$

(by rearranging terms and multiplying by $W_{N}^{N k}=1$), so $X^{\prime}[k]=X^{*}[k]$.
2. (5 marks) Using any method of your choice, find the 5-point circular convolution between the following two signals:

Explain how you would use the fast Fourier transform to obtain this result. What is the value of the output at $n=-2$?

Graphically,

If we take the 5-point FFT (equivalently DFT) of each of the two signals, multiply them together, and invert the result, we will obtain the 5 -point circular convolution.
Calling the result $y[n]$, we know that $y[-2]=\tilde{y}[-2]=y\left[((-2))_{5}\right]=y[3]=0$ (circular wrap-around).
3. (5 marks) Describe in detail how you would implement fast linear convolution on an 8 -point signal such as

with a 4-tap FIR filter such as

using only an 8-point FFT procedure.

We could use either overlap-add or overlap-save. With overlap-add, we could split the signal into two components, each with 4 nonzero elements:

The resulting convolution will then be the sum of the convolution of each of these sequences with the filter impulse response $h[n]$:

An 8-point FFT can be used to implement 8-point circular convolution of the portions of the signal indicated above, by transforming the sequences, multiplying FFT coefficients, and inverting. However, because the 8 -point sequences above have sufficient trailing zeros, circular convolution is equivalent to linear convolution. We can therefore use the FFT to calculate the convolutions $x_{1}[n] * h[n]$ and $x_{2}[n+4] * h[n]$, and the required result is the sum of these sequences with the second delayed by 4 samples.
4. (5 marks) Sketch the magnitude response of the LTI system with the following pole-zero configuration:

What type of filter does this system represent? What is the approximate phase response of the system at $\omega=0$?

Product of lengths of zero vectors divided by product of length of pole vectors should give you something like

The filter has a bandpass characteristic, with the response peaking at around $\omega=\pi / 3$ (passes low frequencies, amplifies frequencies around $\pm \pi / 3$, and attenuates high frequencies).
At $\omega=0$, sum of angles of zero vectors is $0+0+0+\pi=\pi$, and sum of angles of pole vectors is approximately $\left.\left(2 \pi-\frac{\pi}{3}\right)+0+\frac{\pi}{3}\right)=0$. The phase is therefore π (or $-\pi$).

