Fl |ter design e Analysis of finite wordlength effects:In practice one should check that

1 Design considerations: a framework

IH()I

the quantisation used in the implementation does not deghed
performance of the filter to a point where it is unusable.

e Implementation: The filter is implemented in software or hardware. The

criteria for selecting the implementation method involsglies such as
real-time performance, complexity, processing requirgiend
availability of equipment.

Finite impulse response (FIR) filter design
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N-1
y[n) =" hlk]x[n — k]

k=0

N—-1
H(z) = Y hlk]z™%.
k=0

band
The design of a digital filter involves five steps: The following are useful properties of FIR filters:
e Specification: The characteristics of the filter often have to be specified in e They are always stable — the system function contains nspdleis is

the frequency domain. For example, for frequency seleéitiezs
(lowpass, highpass, bandpass, etc.) the specificatiotiyisuelves
tolerance limits as shown above.

e Coefficient calculation: Approximation methods have to be used to
calculate the valuel[k] for a FIR implementation, aty, b, for an IR
implementation. Equivalently, this involves finding a filtehich has
H(z) satisfying the requirements. .

e Realisation: This involves convertingi (z) into a suitable filter structure.
Block or flow diagrams are often used to depict filter struesyand show .
the computational procedure for implementing the digiterfi

particularly useful for adaptive filters.

They can have an exactly linear phase response. The regsolfisquency
dispersion, which is good for pulse and data transmission.

Finite length register effects are simpler to analyse arldss
consequence than for IIR filters.

They are very simple to implement, and all DSP processors hav
architectures that are suited to FIR filtering.

For largeN (many filter taps), the FFT can be used to improve
performance.



Of these, the linear phase property is probably the mostitapb A filter is
said to have a generalised linear phase response if itséneguesponse can
be expressed in the form

H(e/?) = A(e/®)e a0 +iP
wherea andp are constants, andi(e/¢) is a real function ofv. If this is the
case, then

e If A is positive, then the phase is
<H(e'?) = B —aw.
If A is negative, then
<H('?) =7+ p —aw.

In either case, the phase is a linear functiowof

Itis common to restrict the filter to having a real-valued itge responsk|n],
since this greatly simplifies the computational complekithe
implementation of the filter.

A FIR system has linear phase if the impulse response satésfiger the even
symmetric condition
h[n] = h[N — 1 —n],

or the odd symmetric condition
h[n] = —h[N — 1 —n].

The system has different characteristics depending onh&hat is even or
odd. Furthermore, it can be shown that all linear phasediltaust satisfy one
of these conditions. Thus there are exactly four types eflirphase filters.

Consider for example the case of an odd number of samplggjnand even
symmetry. The frequency response /r= 7 is

6
H(e/®) = hln]e™/o"

n=0

= h[0] + A[l]e™/® + h[2]le™/2® + h[3]e™/3® + h[4]e™/4®
+ h[5]e™/3® + h[6]e™/ @
= e /32 (h[0]e/3® + h[1]e/2® + h[2]e’® + h[3] + h[4]e™7®
+ h[5]e™72¢ 4 hl6le™>?).
The specified symmetry property means thi@ = %[6], 2[1] = k[5], and
h[2] = h[4], so
H(e’®) = e 73 (h[0](e”3® + 7 73?) + h[1](e7?® 4 €77/2?)
+ h[2](e’® + e77®) + h[3])
= ¢7/3%(21[0] cog3w) + 2h[1] cOL2w) + 2h[2] cogw))
= ¢~ /3 ia[n] coSwn),

n=0
wherea[0] = h[3], anda[n] = 2h[3 —n] forn = 1,2, 3. The resulting filter
clearly has a linear phase response for kga). It is quite simple to show that
in general for odd values @¥ the frequency response is

(N-1)/2
H(e/?) = ¢~ JoN-D/2 Z a[n] coqwn),
n=0
for a set of real-valued coefficient§0], ..., a[(N — 1)/2]. As different values

for a[n] are selected, different linear-phase filters are obtained.



The cases oV odd andi[n] antisymmetric are similar to that presented, and
the frequency responses are summarised in the followirg:tab

Symmetry N H(e/?) Type
(N-1)/2
Even Odd e /ON=D2 N a[n] codwn) 1
n=0
N/2
Even Even ¢ /*W=/2% " pln]codw(n — 1/2)) 2
n=1
(N-1)/2
Odd Odd e~ /leWN=D2=x/21 N g[n] sin(wn) 3
n=0
' N/2
Odd Even ¢ /[eW=D2=x/21N " plp]sin(w(n—1/2)) 4
n=1

Recall that even symmetry implié$n] = 2[N — 1 — n] and odd symmetry
h{n] = —h[N — 1 — n]. Examples of filters satisfying each of these symmetry
conditions are:
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The center of symmetry is indicated by the dotted line.

The process of linear-phase filter design involves chodsiag|n] values to
obtain a filter with a desired frequency response. This isaivadys possible,
however — the frequency response for a type ll filter, for egkenhas the
property that it isalways zero forw = 7, and is therefore not appropriate for a
highpass filter. Similarly, filters of type 3 and 4 introducg0d phase shift, and
have a frequency response that is always zetw at0 which makes them
unsuitable for as lowpass filters. Additionally, the type8ponse is always
zero atw = m, making it unsuitable as a highpass filter. The type | filte¢hes
most versatile of the four.

Linear phase filters can be thought of in a different way. Réleat a linear
phase characteristic simply corresponds to a time shifetayd Consider now
a real FIR filter with an impulse response that satisfies tke symmetry
conditionh[n] = h[—n]:
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Recall from the properties of the Fourier transform thigfithas a real-valued
frequency responsé(e/®). Delaying this impulse response by — 1)/2
results in a causal filter with frequency response

H(el®) = A(e/®)e /oW =D/2,

This filter therefore has linear phase.
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2.1 Window method for FIR filter design

Assume that the desired filter resporgg(e’/?) is known. Using the inverse
Fourier transform we can determihg[n], the desired unit sample response.
In the window method, a FIR filter is obtained by multiplyingvandow w [r]
with &z [n] to obtain a finite duration[n] of length N. This is required since
hg[n] will in general be an infinite duration sequence, and thessponding
filter will therefore not be realisable. i, [n] is even or odd symmetric and
w|n] is even symmetric, thehy [n]w[n] is a linear phase filter.

Two important design criteria are thength andshape of the windoww[n]. To
see how these factors influence the design, consider th@ifimation
operation in the frequency domain: sinde] = hg4[n]w(n],

H(e’?) = Hy(e’®) * W(el®).

The following plot demonstrates the convolution operatioreach case the
dotted line indicates the desired respofkge/®).
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From this, note that

e Themainlobe width of W(e’/®) affects thetransition width of H(e/).
Increasing the lengtlV of /[n] reduces the mainlobe width and hence the



transition width of the overall response.

e Thesidelobes of W(e/) affect the passhband and stopband tolerance of _ _ N N o ﬁ;‘iﬁ;ﬂa
H(e’®). This can be controlled by changing the shape of the window. o5} -7 N 1
Changing/N does not affect the sidelobe behaviour. P >~

Some commonly used windows for filter design are 0o N/2 N

e Rectangular:

0<n<N — Hanning
wln] = - — Hamming
otherwise \Blackman i
e Bartlett (triangular): N
N
2n/N 0<n<N/2 n
wln]=42-2n/N N/2<n<N

All windows trade off a reduction in sidelobe level againsircrease in
0 otherwise mainlobe width. This is demonstrated below in a plot of thegfrency
response of each of the windows:

e Hanning: -
g 0
0.5—-0.5co092xn/N) 0<n<N 3 — Rectangula
wln] = N — Triangular {1
otherwise — ~50r - ‘ )( \¥ F
= \/ \Wi \
=3 I ’ 1 o
. o { | l | \ I
e Hamming: > -100 | ! ; d
N 0 4
0.54 — 0.46 cog27n/N) 0<n<N _ w
wln] = . s 0
otherwise 2 —— Hanning
g — Hamming
o Kaiser: = 0 . B';?Ck?“anﬂ'
(@]
o
BB~ [ -/ 0=n=N 2 oo A\
wln] = . N 0 T
otherwise
w
Examples of five of these windows are shown below: Some important window characteristics are compared indhening table:



Window Peak sidelobe Mainlobe Peak approximation
amplitude (dB) transition width error (dB)
Rectangular —-13 4w /(N + 1) -21
Bartlett =25 8n/N -25
Hanning -31 8n/N —44
Hamming —41 8n/N —53

The Kaiser window has a number of parameters that can be asxglicitly
tune the characteristics.

In practice, the window shape is chosen first based on pagstrathstopband
tolerance requirements. The window size is then deterniiasdd on
transition width requirements. To determilg[n] from H; (e/“) one can
sampleH;(e/?) closely and use a large inverse DFT.

2.2 Frequency sampling method for FIR filter design

In this design method, the desired frequency respéhs@’®) is sampled at
equally-spaced points, and the result is inverse disciateét transformed.

Specifically, letting

H[k] = Hq(e’®)| k=0,....N—1,

_ 27k »
O==N

the unit sample response of the filterig] = IDFT(H [k]), SO

1 N-1
_ j2nnk/N
hln) = ;;) H[k]e/ 2 nkIN

The resulting filter will have a frequency response that acty the same as

the original response at the sampling instants. Note tlggiso necessary to
specify thephase of the desired respongé,; (e/©), and it is usually chosen to

be a linear function of frequency to ensure a linear phase.fitdditionally, if
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a filter with real-valued coefficients is required, then &iddial constraints
have to be enforced.

Theactual frequency responsH (e/®) of the filter a[n] still has to be
determined. The z-transform of the impulse response is

N-1 N-1 1 N-1
Z hln]z™" = Z |:N Z H[k]ejZnnk/N:| L
n=0

n=0 k=0

H(z)

N-1 N-1
H[k] Z ej2nnk/NZ—n

k=0 n=0

1 1—z7N
N H[k][l_ejznk/zvz—l]

1

Evaluating on the unit circle = ¢/® gives the frequency response

1 —e—joN 7! H k]

N 1 _ej2ﬂk/Ne—jw'
k=0

H(e’®) =

This expression can be used to find the actual frequency meepf the filter
obtained, which can be compared with the desired response.

The method described only guarantees correct frequenpgmes values at the

points that were sampled. This sometimes leads to excagsple at
intermediate points:
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One way of addressing this problem is to alltransition samplesin the
region where discontinuities ifl; (e/“) occur:
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This effectively increases the transition width and canrel@se the ripple, as
observed below:
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By leaving the value of the transition sample unconstragineé can to some
extent optimise the filter to minimise the ripple. Empirlgalith three
transition samples a stopband attenuatioh0®fB is achievable. Recall
however that fori[r] real we require even or odd symmetry in the impulse
response, so the values are not entirely unconstrained.

2.3 Optimum approximations of FIR filters

This method of filter design attempts to find the filter of ldngt that
optimises a given design objective. In this case the objedichosen to be the
minimisation of

max |E(e/®
05w527r| (e’?)]

whereE (e/®) is a weighted error function
E(e’?) = W(e/®)[Ha(e’®) — H(e')].
The minimisation is performed over the filter coefficiehis].

In practice, the design problem can be specified as followsng,, &, f5,
and f;, determine:z[n] such that the design specification is satisfied with the
smallest possiblé/. The optimal (or minimax) design method therefore yields

14



the shortest filter that meets a required frequency respmresehe entire
frequency range. Itis widely used in practice.

Solutions to this optimisation problem have been exploneti¢ literature, and
many implementations of the method are available. It tutnighat when
max| E (e/“)| is minimised, the resulting filter response will have eqyite
passband and stopband, with the ripple alternating in Siiwdsen two equal
amplitude levels:
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The maxima and minima are known as extrema. For linear ploagmks
filters, for example, there are either- 1 or r + 2 extrema, where
r = (N + 1)/2 (for type 1 filters) orr = N/2 (for type 2 filters).

For a given set of filter specifications, the locations of thieezmal
frequencies, apart from those at band edges, are not knowaora fphus the
main problem in the optimal method is to find the locationshef éxtremal
frequencies. Numerous algorithms exist to do this. Oncéoitettions of the
extremal frequencies are known, it is simple to specify tttaa frequency
response, and hence find the impulse response for the filter.
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3 Infinite impulse response (lIR) filter design

An IR filter has nonzero values of the impulse response foradilies ofn,
even ast — oco. To implement such a filter using a FIR structure therefore
requires an infinite number of calculations.

However, in many cases IIR filters can be realised using LCEarisl
computed recursively.

Example:

A filter with the infinite impulse responsgdn] = (1/2)"u[n] has z-transform
1 _Y(2)

1—1/2z70  X(2)

H(z) =

Thereforey[n] = 1/2y[n — 1] 4+ x[n], andy[n] is easy to calculate.

lIR filter structures can therefore be far more computatigredficient than
FIR filters, particularly for long impulse responses.

FIR filters are stable fok[r] bounded, and can be made to have a linear phase
response. lIR filters, on the other hand, are stable if thespate inside the

unit circle, and have a phase response that is difficult toigp&he general
approach taken is to specify the magnitude response, aaddrtéfte phase as
acceptable. This is a disadvantage of IIR filters.

lIR filter design is discussed in most DSP texts.
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