
Filter design

1 Design considerations: a framework
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The design of a digital filter involves five steps:

� Specification: The characteristics of the filter often have to be specified in
the frequency domain. For example, for frequency selectivefilters
(lowpass, highpass, bandpass, etc.) the specification usually involves
tolerance limits as shown above.

� Coefficient calculation: Approximation methods have to be used to
calculate the valueshŒk� for a FIR implementation, orak , bk for an IIR
implementation. Equivalently, this involves finding a filter which has
H.z/ satisfying the requirements.

� Realisation: This involves convertingH.z/ into a suitable filter structure.
Block or flow diagrams are often used to depict filter structures, and show
the computational procedure for implementing the digital filter.
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� Analysis of finite wordlength effects:In practice one should check that

the quantisation used in the implementation does not degrade the

performance of the filter to a point where it is unusable.

� Implementation: The filter is implemented in software or hardware. The
criteria for selecting the implementation method involve issues such as

real-time performance, complexity, processing requirements, and

availability of equipment.

2 Finite impulse response (FIR) filter design

A FIR filter is characterised by the equations

yŒn� D

N �1
X

kD0

hŒk�xŒn � k�

H.z/ D

N �1
X

kD0

hŒk�z�k :

The following are useful properties of FIR filters:

� They are always stable — the system function contains no poles. This is

particularly useful for adaptive filters.

� They can have an exactly linear phase response. The result isno frequency

dispersion, which is good for pulse and data transmission.

� Finite length register effects are simpler to analyse and ofless

consequence than for IIR filters.

� They are very simple to implement, and all DSP processors have

architectures that are suited to FIR filtering.

� For largeN (many filter taps), the FFT can be used to improve

performance.
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Of these, the linear phase property is probably the most important. A filter is

said to have a generalised linear phase response if its frequency response can

be expressed in the form

H.ej!/ D A.ej!/e�j˛!Cjˇ

where˛ andˇ are constants, andA.ej!/ is a real function of!. If this is the

case, then

� If A is positive, then the phase is

^H.ej!/ D ˇ � ˛!:

If A is negative, then

^H.ej!/ D � C ˇ � ˛!:

In either case, the phase is a linear function of!.

It is common to restrict the filter to having a real-valued impulse responsehŒn�,

since this greatly simplifies the computational complexityin the

implementation of the filter.

A FIR system has linear phase if the impulse response satisfies either the even

symmetric condition

hŒn� D hŒN � 1 � n�;

or the odd symmetric condition

hŒn� D �hŒN � 1 � n�:

The system has different characteristics depending on whetherN is even or

odd. Furthermore, it can be shown that all linear phase filters must satisfy one

of these conditions. Thus there are exactly four types of linear phase filters.
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Consider for example the case of an odd number of samples inhŒn�, and even

symmetry. The frequency response forN D 7 is

H.ej!/ D

6
X

nD0

hŒn�e�j!n

D hŒ0� C hŒ1�e�j! C hŒ2�e�j 2! C hŒ3�e�j 3! C hŒ4�e�j 4!

C hŒ5�e�j 5! C hŒ6�e�j 6!

D e�j 3!.hŒ0�ej 3! C hŒ1�ej 2! C hŒ2�ej! C hŒ3� C hŒ4�e�j!

C hŒ5�e�j 2! C hŒ6�e�j 3!/:

The specified symmetry property means thathŒ0� D hŒ6�, hŒ1� D hŒ5�, and

hŒ2� D hŒ4�, so

H.ej!/ D e�j 3!.hŒ0�.ej 3! C e�j 3!/ C hŒ1�.ej 2! C e�j 2!/

C hŒ2�.ej! C e�j!/ C hŒ3�/

D e�j 3!.2hŒ0� cos.3!/ C 2hŒ1� cos.2!/ C 2hŒ2� cos.!//

D e�j 3!

3
X

nD0

aŒn� cos.!n/;

whereaŒ0� D hŒ3�, andaŒn� D 2hŒ3 � n� for n D 1; 2; 3. The resulting filter

clearly has a linear phase response for realhŒn�. It is quite simple to show that

in general for odd values ofN the frequency response is

H.ej!/ D e�j!.N �1/=2

.N �1/=2
X

nD0

aŒn� cos.!n/;

for a set of real-valued coefficientsaŒ0�; : : : ; aŒ.N � 1/=2�. As different values

for aŒn� are selected, different linear-phase filters are obtained.
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The cases ofN odd andhŒn� antisymmetric are similar to that presented, and

the frequency responses are summarised in the following table:

Symmetry N H.ej!/ Type

Even Odd e�j!.N �1/=2

.N �1/=2
X

nD0

aŒn� cos.!n/ 1

Even Even e�j!.N �1/=2

N=2
X

nD1

bŒn� cos.!.n � 1=2// 2

Odd Odd e�j Œ!.N �1/=2��=2�

.N �1/=2
X

nD0

aŒn� sin.!n/ 3

Odd Even e�j Œ!.N �1/=2��=2�

N=2
X

nD1

bŒn� sin.!.n�1=2// 4

Recall that even symmetry implieshŒn� D hŒN � 1 � n� and odd symmetry

hŒn� D �hŒN � 1 � n�. Examples of filters satisfying each of these symmetry

conditions are:
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The center of symmetry is indicated by the dotted line.

The process of linear-phase filter design involves choosingtheaŒn� values to

obtain a filter with a desired frequency response. This is notalways possible,

however — the frequency response for a type II filter, for example, has the

property that it isalways zero for! D �, and is therefore not appropriate for a

highpass filter. Similarly, filters of type 3 and 4 introduce a90ı phase shift, and

have a frequency response that is always zero at! D 0 which makes them

unsuitable for as lowpass filters. Additionally, the type 3 response is always

zero at! D �, making it unsuitable as a highpass filter. The type I filter isthe

most versatile of the four.

Linear phase filters can be thought of in a different way. Recall that a linear

phase characteristic simply corresponds to a time shift or delay. Consider now

a real FIR filter with an impulse response that satisfies the even symmetry

conditionhŒn� D hŒ�n�:
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Recall from the properties of the Fourier transform this filter has a real-valued
frequency responseA.ej!/. Delaying this impulse response by.N � 1/=2

results in a causal filter with frequency response

H.ej!/ D A.ej!/e�j!.N �1/=2:

This filter therefore has linear phase.
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2.1 Window method for FIR filter design

Assume that the desired filter responseHd .ej!/ is known. Using the inverse
Fourier transform we can determinehd Œn�, the desired unit sample response.
In the window method, a FIR filter is obtained by multiplying awindowwŒn�

with hd Œn� to obtain a finite durationhŒn� of lengthN . This is required since
hd Œn� will in general be an infinite duration sequence, and the corresponding
filter will therefore not be realisable. Ifhd Œn� is even or odd symmetric and
wŒn� is even symmetric, thenhd Œn�wŒn� is a linear phase filter.

Two important design criteria are thelength andshape of the windowwŒn�. To
see how these factors influence the design, consider the multiplication
operation in the frequency domain: sincehŒn� D hd Œn�wŒn�,

H.ej!/ D Hd .ej!/ � W.ej!/:

The following plot demonstrates the convolution operation. In each case the
dotted line indicates the desired responseHd .ej!/.
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From this, note that

� Themainlobe width of W.ej!/ affects thetransition width of H.ej!/.
Increasing the lengthN of hŒn� reduces the mainlobe width and hence the
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transition width of the overall response.

� Thesidelobes of W.ej!/ affect the passband and stopband tolerance of

H.ej!/. This can be controlled by changing the shape of the window.

ChangingN does not affect the sidelobe behaviour.

Some commonly used windows for filter design are

� Rectangular:

wŒn� D

8

<

:

1 0 � n � N

0 otherwise

� Bartlett (triangular):

wŒn� D

8

ˆ

ˆ

<

ˆ

ˆ

:

2n=N 0 � n � N=2

2 � 2n=N N=2 < n � N

0 otherwise

� Hanning:

wŒn� D

8

<

:

0:5 � 0:5 cos.2�n=N / 0 � n � N

0 otherwise

� Hamming:

wŒn� D

8

<

:

0:54 � 0:46 cos.2�n=N / 0 � n � N

0 otherwise

� Kaiser:

wŒn� D

8

<

:

I0Œˇ.1 � Œ.n � ˛/=˛�2/1=2� 0 � n � N

0 otherwise

Examples of five of these windows are shown below:
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All windows trade off a reduction in sidelobe level against an increase in
mainlobe width. This is demonstrated below in a plot of the frequency
response of each of the windows:
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Some important window characteristics are compared in the following table:
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Window Peak sidelobe Mainlobe Peak approximation

amplitude (dB) transition width error (dB)

Rectangular �13 4�=.N C 1/ �21

Bartlett �25 8�=N �25

Hanning �31 8�=N �44

Hamming �41 8�=N �53

The Kaiser window has a number of parameters that can be used to explicitly
tune the characteristics.

In practice, the window shape is chosen first based on passband and stopband
tolerance requirements. The window size is then determinedbased on
transition width requirements. To determinehd Œn� from Hd .ej!/ one can
sampleHd .ej!/ closely and use a large inverse DFT.

2.2 Frequency sampling method for FIR filter design

In this design method, the desired frequency responseHd .ej!/ is sampled at
equally-spaced points, and the result is inverse discrete Fourier transformed.

Specifically, letting

HŒk� D Hd .ej!/
ˇ

ˇ

!D
2�k

N

; k D 0; : : : ; N � 1;

the unit sample response of the filter ishŒn� D IDFT.HŒk�/, so

hŒn� D
1

N

N �1
X

kD0

HŒk�ej 2�nk=N :

The resulting filter will have a frequency response that is exactly the same as
the original response at the sampling instants. Note that itis also necessary to
specify thephase of the desired responseHd .ej!/, and it is usually chosen to
be a linear function of frequency to ensure a linear phase filter. Additionally, if
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a filter with real-valued coefficients is required, then additional constraints

have to be enforced.

Theactual frequency responseH.ej!/ of the filterhŒn� still has to be

determined. The z-transform of the impulse response is

H.z/ D

N �1
X

nD0

hŒn�z�n D

N �1
X

nD0

"

1

N

N �1
X

kD0

HŒk�ej 2�nk=N

#

z�n

D
1

N

N �1
X

kD0

HŒk�

N �1
X

nD0

ej 2�nk=N z�n

D
1

N

N �1
X

kD0

HŒk�

�

1 � z�N

1 � ej 2�k=N z�1

�

:

Evaluating on the unit circlez D ej! gives the frequency response

H.ej!/ D
1 � e�j!N

N

N �1
X

kD0

HŒk�

1 � ej 2�k=N e�j!
:

This expression can be used to find the actual frequency response of the filter

obtained, which can be compared with the desired response.

The method described only guarantees correct frequency response values at the

points that were sampled. This sometimes leads to excessiveripple at

intermediate points:
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One way of addressing this problem is to allowtransition samplesin the

region where discontinuities inHd .ej!/ occur:

Passband Transition band Stopband

T1

T2

T3

This effectively increases the transition width and can decrease the ripple, as

observed below:
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By leaving the value of the transition sample unconstrained, one can to some

extent optimise the filter to minimise the ripple. Empirically, with three

transition samples a stopband attenuation of100dB is achievable. Recall

however that forhŒn� real we require even or odd symmetry in the impulse

response, so the values are not entirely unconstrained.

2.3 Optimum approximations of FIR filters

This method of filter design attempts to find the filter of length N that

optimises a given design objective. In this case the objective is chosen to be the

minimisation of

max
0�!�2�

jE.ej!/j

whereE.ej!/ is a weighted error function

E.ej!/ D W.ej!/ŒHd .ej!/ � H.ej!/�:

The minimisation is performed over the filter coefficientshŒn�.

In practice, the design problem can be specified as follows: given ıp, ıs , fp,

andfs, determinehŒn� such that the design specification is satisfied with the

smallest possibleN . The optimal (or minimax) design method therefore yields
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the shortest filter that meets a required frequency responseover the entire

frequency range. It is widely used in practice.

Solutions to this optimisation problem have been explored in the literature, and

many implementations of the method are available. It turns out that when

maxjE.ej!/j is minimised, the resulting filter response will have equiripple

passband and stopband, with the ripple alternating in sign between two equal

amplitude levels:
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The maxima and minima are known as extrema. For linear phase lowpass

filters, for example, there are eitherr C 1 or r C 2 extrema, where

r D .N C 1/=2 (for type 1 filters) orr D N=2 (for type 2 filters).

For a given set of filter specifications, the locations of the extremal

frequencies, apart from those at band edges, are not known a priori. Thus the

main problem in the optimal method is to find the locations of the extremal

frequencies. Numerous algorithms exist to do this. Once thelocations of the

extremal frequencies are known, it is simple to specify the actual frequency

response, and hence find the impulse response for the filter.
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3 Infinite impulse response (IIR) filter design

An IIR filter has nonzero values of the impulse response for all values ofn,

even asn ! 1. To implement such a filter using a FIR structure therefore

requires an infinite number of calculations.

However, in many cases IIR filters can be realised using LCCDEs and

computed recursively.

Example:
A filter with the infinite impulse responsehŒn� D .1=2/nuŒn� has z-transform

H.z/ D
1

1 � 1=2z�1
D

Y.z/

X.z/
:

Therefore,yŒn� D 1=2yŒn � 1� C xŒn�, andyŒn� is easy to calculate.

IIR filter structures can therefore be far more computationally efficient than

FIR filters, particularly for long impulse responses.

FIR filters are stable forhŒn� bounded, and can be made to have a linear phase

response. IIR filters, on the other hand, are stable if the poles are inside the

unit circle, and have a phase response that is difficult to specify. The general

approach taken is to specify the magnitude response, and regard the phase as

acceptable. This is a disadvantage of IIR filters.

IIR filter design is discussed in most DSP texts.

16


