Filter design

1 Design considerations: a framework
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The design of a digital filter involves five steps:

e Specification: The characteristics of the filter often have to be specified in
the frequency domain. For example, for frequency seletitiees
(lowpass, highpass, bandpass, etc.) the specificatiomlyiswalves
tolerance limits as shown above.

e Coefficient calculation: Approximation methods have to be used to
calculate the valuesk] for a FIR implementation, atg, by for an IIR
implementation. Equivalently, this involves finding a filtghich has
H (z) satisfying the requirements.

e Realisation: This involves converting? (z) into a suitable filter structure.
Block or flow diagrams are often used to depict filter struesyiand show
the computational procedure for implementing the digitedi



¢ Analysis of finite wordlength effects:In practice one should check that
the quantisation used in the implementation does not deghad
performance of the filter to a point where it is unusable.

e Implementation: The filter is implemented in software or hardware. The
criteria for selecting the implementation method involsgues such as
real-time performance, complexity, processing requimgsyeand
availability of equipment.

2 Finite impulse response (FIR) filter design

A FIR filter is characterised by the equations

N-1

y[n) =Y hiklx[n — k]

k=0
N-1
H(z) = )  hlk]z"*.
k=0

The following are useful properties of FIR filters:

e They are always stable — the system function contains nespdlas is
particularly useful for adaptive filters.

e They can have an exactly linear phase response. The regsolfiequency
dispersion, which is good for pulse and data transmission.

¢ Finite length register effects are simpler to analyse andss
consequence than for IIR filters.

e They are very simple to implement, and all DSP processors hav
architectures that are suited to FIR filtering.

e ForlargeN (many filter taps), the FFT can be used to improve
performance.



Of these, the linear phase property is probably the mostitapb A filter is
said to have a generalised linear phase response if itsdneguesponse can
be expressed in the form

H(e'?) = A(e/®)e /*@tiP
whereo andp are constants, and(e/¢) is a real function ofv. If this is the
case, then

e If Ais positive, then the phase is
<H('?) = B —aw.
If A is negative, then
<H@E®) =7+ B —aw.

In either case, the phase is a linear functiowof

It is common to restrict the filter to having a real-valued ulge responsg|n],
since this greatly simplifies the computational complekitjhe
implementation of the filter.

A FIR system has linear phase if the impulse response satesfiger the even
symmetric condition
hin] = h[N — 1 —n],

or the odd symmetric condition
hln] = —h[N — 1 —n].

The system has different characteristics depending onhehat is even or
odd. Furthermore, it can be shown that all linear phasediltauist satisfy one
of these conditions. Thus there are exactly four types eflirphase filters.



Consider for example the case of an odd number of samplggjnand even
symmetry. The frequency response for= 7 is

6
H(e/®) =) " hlnle™/*"
n=0

= h[0] + h[1]e™7/® + h[2]e™72® + h[3]e™ /3¢ + h[4]e /4®
+ h[5]e™7°® + h[6]e”7 6@
= e 3 (h[0]e’3® + h[1]e’?® + h[2]e’® + h[3] + h[4]le” 7
+ h[5]e™/%® 4 h[6]e 7 3®).
The specified symmetry property means thi@] = 4[6], #[1] = h[5], and
h[2] = h[4], so
H(e’?) = e3¢ (h[0](e/3 + e773%) + h[1](e/?® 4 7729)
+ h2)(e’® 4+ e7/?) + h[3])
= ¢ /3% (21[0] cog3w) + 2h[1] cO2w) + 2h[2] coqw))

3
= /3% Z a[n] coqwn),
n=0
wherea[0] = h[3], anda[n] = 2h[3 —n] forn = 1,2, 3. The resulting filter

clearly has a linear phase response for igal. It is quite simple to show that
in general for odd values a@¥ the frequency response is

(N-1)/2
H(e/?) = e~ 7oW-1/2 Z a[n] coqwn),
n=0
for a set of real-valued coefficient$0], ..., a[(N — 1)/2]. As different values

for a[n] are selected, different linear-phase filters are obtained.



The cases oN odd andi[r] antisymmetric are similar to that presented, and
the frequency responses are summarised in the followirg:tab

Symmetry N H(e/®) Type
. (N-1)/2
Even Odd e oW -1/2 Z a[n] coSwn) 1
n=0
N/2

Even  Even e /*WTD2N pln]codw(n — 1/2)) 2
n=1

| (N-1)/2
Odd Odd e /lN=D/2=m2l N ] sin(wn) 3
n=0
N/2
Odd Even ¢ /[@W=D2=7/21% " pn]sin(w(n—1/2)) 4
n=1

Recall that even symmetry implié$n] = 2[N — 1 — n] and odd symmetry
h|n] = —h[N — 1 — n]. Examples of filters satisfying each of these symmetry

conditions are:
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The center of symmetry is indicated by the dotted line.

The process of linear-phase filter design involves choas$ieg|n] values to
obtain a filter with a desired frequency response. This isatveays possible,
however — the frequency response for a type Il filter, for eplenhas the
property that it isalways zero forw = 7, and is therefore not appropriate for a
highpass filter. Similarly, filters of type 3 and 4 introducg0& phase shift, and
have a frequency response that is always zet® -at0 which makes them
unsuitable for as lowpass filters. Additionally, the typee8ponse is always
zero atw = &, making it unsuitable as a highpass filter. The type | filtehes
most versatile of the four.

Linear phase filters can be thought of in a different way. Récat a linear
phase characteristic simply corresponds to a time shifeayd Consider now
a real FIR filter with an impulse response that satisfies tea symmetry
conditioni[n] = h[—n]:
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Recall from the properties of the Fourier transform thigfiltas a real-valued
frequency responsé(e/®). Delaying this impulse response by — 1)/2

results in a causal filter with frequency response
H(eja)) — A(eja))e—ja)(N—l)/z.

This filter therefore has linear phase.
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2.1  Window method for FIR filter design

Assume that the desired filter resporég(e’/*) is known. Using the inverse
Fourier transform we can determing[n], the desired unit sample response.
In the window method, a FIR filter is obtained by multiplyingvandow w[n]
with 44 [n] to obtain a finite duratioh[n] of length N. This is required since
hq[n] will in general be an infinite duration sequence, and thessponding
filter will therefore not be realisable. Iif;[n] is even or odd symmetric and
w(n] is even symmetric, theh; [n]w(n] is a linear phase filter.

Two important design criteria are thangth andshape of the windoww|[n]. To
see how these factors influence the design, consider theihwaltion
operation in the frequency domain: sinde]| = h4[n]w[n],

H(e’®) = Hy(e’?) * W(e’®).

The following plot demonstrates the convolution operatioreach case the
dotted line indicates the desired respohkge’®).
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From this, note that

e Themainlobe width of W(e’/®) affects theransition width of H(e/®).
Increasing the lengtlv of /[n] reduces the mainlobe width and hence the



transition width of the overall response.

e Thesidelobes of W(e’/?) affect the passband and stopband tolerance of
H (e’®). This can be controlled by changing the shape of the window.
ChangingN does not affect the sidelobe behaviour.

Some commonly used windows for filter design are

e Rectangular:

0<n<N
wln] = _
0 otherwise
e Bartlett (triangular):
2n/N 0<n<N/2
wln] =32-2n/N N/2<n<N
0 otherwise
e Hanning:
0.5—0.5co92nn/N) 0<n<N
w(n] = :
otherwise
e Hamming:
0.54 — 0.46co92nn/N) 0<n<N
wln] = :
otherwise
o Kaiser:
Lo[B(1 —[(n — ) /a]?)'/?] 0<n<N
wln] = .
otherwise

Examples of five of these windows are shown below:
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All windows trade off a reduction in sidelobe level against@crease in
mainlobe width. This is demonstrated below in a plot of tlesjtrency

response of each of the windows:
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Some important window characteristics are compared indh@ading table:
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Window Peak sidelobe Mainlobe Peak approximation

amplitude (dB) transition width error (dB)
Rectangular —13 4 /(N + 1) —21
Bartlett —25 8t/N —25
Hanning —31 8 /N —44
Hamming —41 8w /N —53

The Kaiser window has a number of parameters that can be aseqgblicitly
tune the characteristics.

In practice, the window shape is chosen first based on pagsivahstopband
tolerance requirements. The window size is then deterntiasdd on
transition width requirements. To determihg[n] from H;(e/*) one can
sampleH (e/?) closely and use a large inverse DFT.

2.2 Frequency sampling method for FIR filter design

In this design method, the desired frequency respéhse’) is sampled at
equally-spaced points, and the result is inverse disciateiér transformed.

Specifically, letting
H[k]:Hd(ejw)‘w:%’ k=0,....,N —1,

the unit sample response of the filtetiig] = IDFT(H [k]), SO
hln] = 1 Nf H[k]e/ 27 nk/IN .
N k=0
The resulting filter will have a frequency response that &céy the same as
the original response at the sampling instants. Note th&biso necessary to
specify thephase of the desired respondé; (e/?), and it is usually chosen to
be a linear function of frequency to ensure a linear phase.f#dditionally, if
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a filter with real-valued coefficients is required, then #iddial constraints
have to be enforced.

Theactual frequency responsH (e/¢) of the filter 4[n] still has to be
determined. The z-transform of the impulse response is

N—1 N1 | N-1
H(Z) — Z h[l’l]Z_n — Z |:N Z H[k]ejZnnk/Ni| Zn
n=0

n=0 k=0

1 1—z7N
- N H[k]|:1_€j27tk/NZ—1:|'
Evaluating on the unit circle = e/ gives the frequency response
| —eJoN 2] HIk]

k=0

H(e'?) =

This expression can be used to find the actual frequencymespd the filter
obtained, which can be compared with the desired response.

The method described only guarantees correct frequenpgmss values at the
points that were sampled. This sometimes leads to excegsple at
intermediate points:
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One way of addressing this problem is to alloansition samplesin the
region where discontinuities if ; (e/*) occur:
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This effectively increases the transition width and carrelese the ripple, as
observed below:
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By leaving the value of the transition sample unconstraioneé can to some
extent optimise the filter to minimise the ripple. Empirlgalvith three
transition samples a stopband attenuatioh09dB is achievable. Recall
however that forz[n] real we require even or odd symmetry in the impulse
response, so the values are not entirely unconstrained.

2.3 Optimum approximations of FIR filters

This method of filter design attempts to find the filter of ldngt that
optimises a given design objective. In this case the oleddichosen to be the
minimisation of

max |E(e’?)|
0<w=<2m

whereE (e/®) is a weighted error function
E(7®) = W(e!*)[Ha(e’®) — H(e’)].
The minimisation is performed over the filter coefficiehis].

In practice, the design problem can be specified as followsnd ,, 6, /5,
and f, determinéz[n] such that the design specification is satisfied with the
smallest possibl&/. The optimal (or minimax) design method therefore yields

14



the shortest filter that meets a required frequency respmresdhe entire
frequency range. Itis widely used in practice.

Solutions to this optimisation problem have been explonetti¢ literature, and
many implementations of the method are available. It tutriglat when
max| E (e/?)| is minimised, the resulting filter response will have equgte
passband and stopband, with the ripple alternating in séinvden two equal
amplitude levels:

[H(e|
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The maxima and minima are known as extrema. For linear ploagsks
filters, for example, there are either- 1 or r + 2 extrema, where
r = (N + 1)/2 (for type 1 filters) orr = N/2 (for type 2 filters).
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For a given set of filter specifications, the locations of tkieeznal
frequencies, apart from those at band edges, are not knowara phus the
main problem in the optimal method is to find the locationsheféxtremal
frequencies. Numerous algorithms exist to do this. Oncéotetions of the
extremal frequencies are known, it is simple to specify tttaa frequency
response, and hence find the impulse response for the filter.
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3 Infinite impulse response (lIR) filter design

An IR filter has nonzero values of the impulse response foradilies ofn,
even a1 — oo. To implement such a filter using a FIR structure therefore
requires an infinite number of calculations.

However, in many cases IIR filters can be realised using LCEaxl
computed recursively.

Example:
A filter with the infinite impulse responsdn] = (1/2)"u[n] has z-transform

1 _Y(2)

HE) =107 = X0y

Thereforey[n] = 1/2y[n — 1] + x[n], andy[n] is easy to calculate.

[IR filter structures can therefore be far more computatigredficient than
FIR filters, particularly for long impulse responses.

FIR filters are stable fat[n] bounded, and can be made to have a linear phase
response. IR filters, on the other hand, are stable if thegate inside the

unit circle, and have a phase response that is difficult toigpd he general
approach taken is to specify the magnitude response, aaddrdge phase as
acceptable. This is a disadvantage of IR filters.

[IR filter design is discussed in most DSP texts.

16



