Discrete-time signals and systems
See Oppenheim and Schafer, Second Edition pages 8—93sbEHition
pages 8-79.

1 Discrete-time signals

A discrete-time signal is represented as a sequence of mambe
x = {x[n]}, —00 < n < 00.

Heren is an integer, and|n] is thenth sample in the sequence.

Discrete-time signals are often obtained by sampling oootiis-time signals.

In this case theth sample of the sequence is equal to the value of the analogue

signalx,(¢) attimet = nT:
x[n] = x,(nT), —00 < n < oo.

Thesampling periodis then equal td”, and the sampling frequency is

fi=1/T.
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For this reason, althougtir] is strictly thenth number in the sequence, we
often refer to it as theth sample We also often refer to “the sequenck:]”
when we mean the entire sequence.

Discrete-time signals are often depicted graphically devis:
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(This can be plotted using the MATLAB functiat em) The valuex[n] is
undefinedfor noninteger values of.

Sequences can be manipulated in several waysstiimeandproduct of two
sequences[n] andy[n] are defined as the sample-by-sample sum and product
respectively. Multiplication of[r] by a is defined as the multiplication of

each sample value hy.

A sequence [n] is adelayedor shifted version ofx[n] if
yln] = x[n — no),
with ng an integer.

Theunit sample sequence

is defined as

n=0.

5[n]={(1) n#0

This sequence is often referred to adiscrete-time impulse or justimpulse.
It plays the same role for discrete-time signals as the Diedia function does
for continuous-time signals. However, there are no mathieaia



complications in its definition.

An important aspect of the impulse sequence is that an arpisequence can

be represented as a sum of scaled, delayed impulses. Foplexdne
sequence

a_
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can be represented as
x[n] = a—48[n + 4] + a_38[n + 3] + a_28[n + 2] + a_16[n + 1] + apd[n]
+a18[n — 1] + a28[n — 2] + aszd[n — 3] + a4é[n — 4].

In general, any sequence can be expressed as

oo

x[a)= " x[kls[n —k].
k=—00
Theunit step sequence
n
0
is defined as
{1 n>0
uln] =
0 n<

The unit step is related to the impulse by

uln] = Y S[k].

k=—00

Alternatively, this can be expressed as
o0
uln] = 8] + 8fn — 1]+ 8[n — 2] +--- = > 8[n —kJ.
k=0
Conversely, the unit sample sequence can be expressedfasttbackward

difference of the unit step sequence

8[n] = uln] —uln —1].

Exponential sequencesre important for analysing and representing
discrete-time systems. The general form is

x[n] = Aa".

If A anda are real numbers then the sequence is re@ll.dfa < 1 andA4 is
positive, then the sequence values are positive and decnétsincreasing::
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For—1 < o < 0 the sequence alternates in sign, but decreases in magnitude

For|x| > 1 the sequence grows in magnitudenagcreases.

A sinusoidal sequence




has the form Thus the discrete-time sinusoid is only periodic if

x[n] = Acodwon + ¢) forall n,
. . . AcoSwon + ¢) = AcoSwon + woN + ¢),
with 4 and¢ real constants. The exponential sequeseé with complex

o = |aje/?0 andA4 = |A|e/? can be expressed as which requires that
x[n] = Ae” = |Ale’?|a|" /0" = |Al|a|" ¢/ @on ) woN =2mk  fork aninteger

_ n . n o1
= |Alle[" coswon + ¢) + j[Alle|” sin(won + ), The same condition is required for the complex exponengiglisnce

so the real and imaginary parts are exponentially weightedsids. Ce/®0" to be periodic.
Whenla| = 1 the sequence is called taemplex exponential sequence The two factors just described can be combined to reach thelwsion that
x[n] = |Ale?@n+9) — | 4| coswon + ¢) + j|A| SiNwon + B). there are onlyV distinguishable frequencies for which the corresponding

sequences are periodic with peridd One such set is
Thefrequency of this complex sinusoid i®g, and is measured in radians per

sample. Thehaseof the signal isp. wp = % k=0.1,....N—1

The index is always an integer. This leads to some important diffezenc

between the properties of discrete-time and continugus-Gomplex Additionally, for discrete-time sequences the interpietaof high and low
exponentials: frequencies has to be modified: the discrete-time sinuksé&tpience

x[n] = Acodwon + ¢) oscillates more rapidly as, increases frond to r,

o Consider the complex exponential with frequeliey + 27): l o
but the oscillations become slower as it increases furtioen fr to 2.

x[n] — Ae](wo+27r)n — Ae_]a)one]2nn = Ael@on

Thus the sequence for the complex exponential with frequegds
exactlythe same as that for the complex exponential with frequency
(wo + 27). More generally, complex exponential sequences with
frequenciegwy + 27 r), wherer is an integer, are indistinguishable from
one another. Similarly, for sinusoidal sequences

x[n] = Acod(wg + 27r)n + ¢] = AcoSwon + ¢).

¢ In the continuous-time case, sinusoidal and complex exptaie
sequences are always periodic. Discrete-time sequenegerodic (with
period N) if
x[n] = x[n + N] for all n.
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wg =0

Sk | A discrete-time system is defined as a transformation or mgpyperator that
maps an input signal[n] to an output signay[r]. This can be denoted as
1F ' $ o _
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- . y[n] = T{x[n]}.
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The sequence correspondingdg = 0 is indistinguishable from that with y[n]=x[n-2] N N N \\ AN
wp = 2m. In general, any frequencies in the vicinityof = 27k for integer 2\ 1 1
k are typically referred to as low frequencies, and thoseénvthinity of n
wo = (m + 2xk) are high frequencies. -1 0 3

This operation shifts input sequence latenrigysamples.



Example: Moving average

| ik
- —k
= oL 2, xln—Hl
k=—M,

For M, = 1 andM, = 1, the input sequence

y[3]
|

yields an output with

Y] = S eI+ x[2] + 2[3)

yB3) = (2 + x[3] + x4

In general, systems can be classified by placing constraintise
transformatiori {-}.

2.1 Memoryless systems

A system is memoryless if the outpuf:] depends only o [z] at the same.

For exampley[n] = (x[n])? is memoryless, but the ideal delay

y[n] = x[n —ng]is notunless,; = 0.

2.2 Linear systems

A system is linear if the principle of superposition appli€bus if y,[r] is the
response of the system to the inpy{n], andy,[n] the response to,[n], then
linearity implies

o Additivity:
T{x1[n] + x2[n]} = T{x1[n]} + T{xz[n]} = y1ln] + y2(n]
e Scaling:
T{axi[n]} = aT{x;[n]} = ay:[n].
These properties combine to form the general principle pégposition
Tiaxi[n] + bxa[n]} = aT{x1[n]} + bT {xz[n]} = ay1[n] + bya[n].

In all cases: andb are arbitrary constants.

This property generalises to many inputs, so the resporsdiedar system to
x[n] = > 4 arxg[n] will be y[n] = >, apy[n].

2.3 Time-invariant systems

A system is time invariant if a time shift or delay of the inpetguence causes
a corresponding shift in the output sequence. That isjf is the response to
x[n], theny[n — ny] is the response to[n — ng].

For example, the accumulator system

n

yil= Y X[k

k=—o00
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is time invariant, but the compressor system
y[n] = x[Mn]

for M a positive integer (which selects evevfth sample from a sequence) is
not.

2.4 Causality

A system is causal if the output atdepends only on the inpat » and earlier
inputs
For example, the backward difference system
ylnl = x[n] = x[n — 1]
is causal, but the forward difference system
y[n] = x[n + 1] — x[n]

is not.

2.5 Stability
A system is stable if every bounded input sequence produbesraded output
sequence:

e Bounded input: |x[n]| < By < 00

e Bounded output: |y[n]| < By < 0.

For example, the accumulator

n

yinl= > xn]

k=—00
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is an example of annboundedystem, since its response to the unit stgg
is

" 0 0
yil= % u[n]={ " e

koo n—+1 n>0,

which has no finite upper bound.

3 Linear time-invariant systems

If the linearity property is combined with the represematbf a general
sequence as a linear combination of delayed impulses, thatoivs that a
linear time-invariant (LTI) system can be completely clutegsed by its
impulse response.

Supposéi 1] is the response of a linear system to the impéd[se- k] at
n = k. Since
o
yln =T { > x[k]s[n - k]} :
k=—o00
the principle of superposition means that
yinl= Y0 KT~k = ) xlklieln).

k=—o00 k=—o00
If the system is additionally time invariant, then the resp®toi[n — k] is
h[n — k]. The previous equation then becomes

oo
ylnl = Y x[klhln — k.
k=—0c0

This expression is called tlewnvolution sum Therefore, a LTI system has
the property that giveh[n], we can findy[n] for anyinput x[n]. Alternatively,
y[n] is theconvolution of x[r] with i[n], denoted as follows:

y[n] = x[n] * h[n].

12



The previous derivation suggests the interpretation tiairtput sample at

n = k, represented by[k]5[n — k], is transformed by the system into an
output sequencelk]h[n — k]. For eachk, these sequences are superimposed
to yield the overall output sequence:

‘ X[ ‘ N hin]
L !

-10 | n 0 n
‘ X[=1]8[n + 1] ‘ X1 + 1]
[
-10 n 0 n
x[1]8[n — 1] x[1]A[n —1]
1
0 I n 0 l l ! n
‘ y[n] = x[-1]h[n + 1] + x[1]h[n — 1]
{ l ! N

A slightly different interpretation, however, leads to aneenient
computational form: thath value of the output, namely{r], is obtained by
multiplying the input sequence (expressed as a functidr) bl the sequence
with valuesh[n — k], and then summing all the values of the products
x[k]h[n — k]. The key to this method is in understanding how to form the
sequencé[n — k] for all values ofn of interest.

To this end, note thdt[n — k] = h[—(k — n)]. The sequenck[—k] is seen to
be equivalent to the sequenici] reflected around the origin:

13

2 o0
Reflect [ [ ‘ h[-k]
T 1 ] 1 Kk
5 0o 2
—_—
Shift [ ‘ ‘ h[n—k]
I 1 ] 1 K
n-5 0 n n+2

The sequenck[n — k] is then obtained by shifting the origin of the sequence
tok =n.

To implement discrete-time convolution, the sequendé$andh[n — k] are
multiplied together for-oco < k < oo, and the products summed to obtain the
value of the output samplglr]. To obtain another output sample, the
procedure is repeated with the origin shifted to the new $aimgpsition.

Example: analytical evaluation of the convolution sum
Consider the output of a system with impulse response

1 0<n<N-1
hin] =
0 otherwise

to the inputx[n] = a"u[n]. To find the output at, we must form the sum over
all k of the productx[k]h[n — k].

14
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Since the sequences are non-overlapping for all negatitiee output must be
zero:

y[n] =0, n < 0.
For0 <n < N — 1 the product terms in the sum arg]h[n — k] = a¥, so it
follows that

n
y[n]:Za", 0<n=<N-L
k=0

Finally, forn > N — 1 the product terms are[k]h[n — k] = a* as before, but
the lower limit on the sum is now — N + 1. Therefore

n

y[n] = Z a*, n>N—1.
k=n—N-+1

15

4 Properties of LTI systems

All LTI systems are described by the convolution sum

oo

ylnl= Y x[klhln — k.

k=—o00
Some properties of LTI systems can therefore be found byiderisg the
properties of the convolution operation:

e Commutative: x[n] x h[n] = hln] * x[n]

Distributive over addition:

x[n] * (hi[n] + ha[n]) = x[n] * hi[n] + x[n] * ha[n].

Cascade connection:

— hy[n] = hp[n] ——
X[n] y[n]
= —— In] >  hi[n] ———

x[n] yln]

y[n] = h[n] * x[n] = hyi[n] * ha[n] * x[n] = han] * hy[n] * x[n].

Parallel connection:

Y

hy[n]

—
x[n] y[n]
ha[n]

Y

y[n] = (hi[n] + ha[n]) * x[n] = hp[n] * x[n].
Additional important properties are:
e ALTIsystemisstableif and only if S = Y22 |h[k]| < oc. Theideal

16



delay systemi[n] = 6[n — ng4] is stable sincé = 1 < oo; themoving
averagesystem

1 M2
hinl = ————— )" 8n—kl
M M 1
1+ Mz + ke,
1
MM TT —Mi=n =M,
0 otherwise

theforward difference systemi[n] = §[n + 1] — §[n], and thebackward
difference systemi[n] = §[n] — §[n — 1] are stable sinc# is the sum of a
finite number of finite samples, and is therefore less tkaithe
accumulator system

hln] = " 8[k]

k=—00

1 n=>0
N 0 n<0
= u[n]

is unstable sincd = Y 7 u[n] = co.

IIR system
hn] = auln], la] <1
is stable since
1

o0 o0
S=>"la"1 <) la" = < o0
1—la]
n=0 n=0

(it is the sum of an infinite geometric series).

Consider the system

Forward One-samplg
difference " | delay

which has

hin] = (8[n + 1] — 8[n]) * 8[n — 1]
=4§[n—1] % 8[n + 1] — §[n — 1] = §[n]
= §[n] — 8[n — 1].

This is the impulse response of a backward difference system

One-sample _ | Forward

— . . EEE—
A LTI system is causal if and only #i[n] = 0 for n < 0. The ideal delay delay difference
system is causal if; > 0; the moving average system is causal if
—M;, > 0 andM, > 0; the accumulator and backward difference systems L Backward
are causal; the forward difference system is noncausal. = T ™ difference |

Systems with only a finite number of nonzero values|im are called=inite
duration impulse response (FIR)systems. FIR systems are stable if each
impulse response value is finite. The ideal delay, the moauggage, and the
forward and backward difference described above fall int® ¢lassInfinite
impulse response (lIR)systems, such as the accumulator system, are more Consider the system consisting of an accumulator followed backward
difficult to analyse. For example, the accumulator systeamgable, but the difference:

Here a non-causal system has been converted to a causal oasdayling with
a delay. In generaBny non-causal FIR system can be made causal by
cascading with a sufficiently long delay

17 18



Backward
——»{ Accumulator > . =
difference

The impulse response of this system is
h[n] = u[n] * (8[n] — 8[n — 1]) = u[n] —uln — 1] = §[n].

The output is therefore equal to the input becavigé x §[n] = x[n]. Thus the
backward difference exactly compensates for (or invehis)effect of the
accumulator — the backward difference system isithierse systenfor the
accumulator, and vice versa. We define this inverse relsttiprfor all LTI
systems:

hin] % hi[n] = 8[n].

5 Linear constant coefficient difference equations

Some LTI systems can be represented in terms of linear auriafficient
difference (LCCD) equations

N M
Zaky[n —k] = Z bmx[n —m].
k=0 m=0

Example: difference equation representation of the accumlator
Take for example the accumulator

Backward
—————{ Accumulator - . e
difference

x[n] y[n] X[n]

Herey[n] — y[n — 1] = x[n], which can be written in the desired form with
N =1,a9=1,a; = -1, M = 0, andby = 1. Rewriting as

ylnl = yln —1] + x[n]

19

we obtain theecursion representation

+ -
x[n] Y y[n]

One-sample
delay

where at: we add the current input[r] to the previously accumulated sum
y[n —1].

Example: difference equation representation of moving aveage

Consider now the moving average system wiflh = 0:

h[n] =

o [ (ln] —uln — My — 1]).

The output of the system is

M>

1
T > xln—kl,

k=0

which is a LCCDE withN = 0,a¢ = 1,andM = M,, b = 1/(M, + 1).
Using the sifting property of[n],

yln] =

hin] = Fyo 1(8[”] —68[n — My —1]) * un]
SO
Attenuator + x1[n]
— (+ Accumulator——»
xn] |[1/(M2+1) yln]
| M+ ||
sample delay

20



Herex;[n] = 1/(M + 1)(x[n] — x[n — M, — 1]) and for the accumulator
y[n] — y[n — 1] = x1[n]. Therefore

yll=yln—1] = (x[n] = x[n — My — 1)),

M, + 1
which is again a (different) LCCD equation wifth = 1,a9 = 1,a; = —1,
bo = =by,+1 =1/(M2 + 1).
As for constant coefficient differential equations in tha@thouous case,
without additional information or constraints a LCCDE does provide a
unique solution for the output given an input. Specificalyppose we have
the particular outpuy , [#] for the inputx ,[r]. The same equation then has the
solution

y[nl = ypln] + ynlnl,
whereyy[n] is any solution withx[r] = 0. That is,y,[r] is anhomogeneous
solution to thehomogeneous equation

N
> axaln — k] =0,
k=0

It can be shown that there aMe nonzero solutions to this equation, so a set of
N auxiliary conditions are required for a unique specifiaatd y[n] for a
givenx[n].

If a system is LTland causalthen the initial conditions ariaitial rest
conditions, and a unique solution can be obtained.

6 Frequency-domain representation of
discrete-time signals and systems

The Fourier transform considered here is strictly speattiegliscrete-time
Fourier transform (DTFT) , although Oppenheim and Schafer call it just the

21

Fourier transform. Its properties are recapped here (wimgles) to show
nomenclature.

Complex exponentials

jon

x[n]l=-e —00 < n < 00

are eigenfunctions of LTI systems:

vl = Y hlkle*¢ =efw"( > h[k]e‘f“’k).

k=—o0 k=—00

Defining
H(e/) = > hlkle™/**

k=—00
we have thay [n] = H(e/?)e/®" = H(e/®)x[n]. Thereforeg/®" is an
eigenfunction of the system, arffi(e/*) is the associated eigenvalue.

The quantityH (e/®) is called thefrequency responseof the system, and
H() = Hr(’®) + jH1 (/) = |H(e™*)[e/ <1,

Example: frequency response of ideal delay:

Consider the input[n] = ¢/®" to the ideal delay systemin] = x[n — ng4]:

the output is
y[n] = elon—na) _ ,—jong ,jon

The frequency response is therefore
H(e!®) = e /®na,
Alternatively, for the ideal delag[n] = §[n — ng],

o0
H(e'?) = Z §[n —ngle /oM = e/ona

n=—0oo

The real and imaginary parts of the frequency response are

22



Hg(e/®) = codwng) and Hy (e/?) = sin(wny), or alternatively
|H()| =1
<H(e'?) = —wny.
The frequency response of a LTI system is essentially the $antontinuous

and discrete time systems. However, an important distings that in the
discrete case it ialwaysperiodic in frequency with a periolr:

o0
H(ej(“’+2”)): Z h[n]e—j(w—i-zn)n
n=—00
e . .
— Z h[n]e—]wne—JZnn
n=—00
e . .
= Y hnle™/*" = H(e').

This last result holds sinegt/27" = 1 for integern.

The reason for this periodicity is related to the observetitat the sequence

{7y,
has exactly the same values as the sequence

{e—j(w-‘rZH)n }

—0<n<x

—o0 < n <oQ.

A system will therefore respond in exactly the same way td lsejuences.

Example: ideal frequency selective filters
The frequency response of an ideal lowpass filter is as fallow

23

Hlp(ejw)

T
_27t i —We

0

g

Only required part

Due to the periodicity in the response, it is only necessagonsider one
frequency cycle, usually chosen to be the rangeto 7. Other examples of

ideal filters are:

2

1 th(e]w)
T T w
—T g, 0 we T

1 Hbs(ejw)
T T w
T —wp —w, 0 wqy wp T

1| Hopl(e?®)
T T w
T —wp —w, 0 Wq wp T

In these cases it is implied that the frequency responsatepsth periox

outside of the plotted interval.

Highpass

Bandstoy

Bandpas

Example: frequency response of the moving-average system
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The frequency response of the moving average system

h[n] =

is given by

1

1
— < <
M+ My+1 My =n =M

0 otherwise

ejw(Mz-i—M] +1)/2 _ e—jw(M2+M1 +1)/2

H(e!?) =
My + M, +1

1

- e
l—e /@

eja)(M2+M1 +1)/2 _ e—ja)(Mz-i—M] +1)/2

M+ M, +1
1

- . e
el®/2 _ og—jw/2

sinflw(My + M, + 1)/2] _jw(M%—Ml)
e .

M+ M, +1
ForM; = 0andM, = 4,

sin(w/2)

JoMy—My +1)
- 2

_ja)(szM])
2

7

|H(e/®)]

A

g or

<<H(e’®)

This system attenuates high frequencies (at areued ), and therefore has

the behaviour of a lowpass filter.

25

7 Fourier transforms of discrete sequences

The discrete time Fourier transform (DTFT) of the sequetiaéis

oo

X(e/?) = Z x[n]e=7em.

n=—0o0o

This is also called théorward transform or analysisequation. Thenverse
Fourier transform , or synthesisformula, is given by the Fourier integral

1 [~ S
x[n] = —/ X(e’?)e!"dw.
2 J_n
The Fourier transform is generally a complex-valued fuorctf w:

X(e7®) = XR(e®) + jX1(e7®) = |X(e/®)|e/ XE),

The quantitie$ X (e/*)| and< X (e/) are referred to as th@agnitude and
phaseof the Fourier transform. The Fourier transform is oftereredd to as
the Fourier spectrum.

Since the frequency response of a LTI system is given by

o0
H(e/®) = Y hlkle /¥,
k=—oc0
it is clear that the frequency response is equivalent to theiér transform of
the impulse response, and the impulse response is

1 1

hinl = — | H('®)e/ " dw.
2

b/

A sufficient condition for the existence of the Fourier tfamsn of a sequence

x[n] is that it be absolutely summablI®:>> __ |x[n]| < cc. In other words,
the Fourier transform exists if the sum;> ___ |x[n]| converges. The Fourier

transform may however exist for sequences where this isnett a rigorous
mathematical treatment can be found in the theoryesferalised functions
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8 Symmetry properties of the Fourier transform

Any sequence[n] can be expressed as
x[n] = xe[n] + xo[n],

wherex,[n] is conjugate symmetric(x, [n] = xJ [—n]) andx,[n] is conjugate
antisymmetric (x,[n] = —x}[—n]). These two components of the sequence
can be obtained as:

bl = 5] 4 x° (o) = ¥ [
%oli] = 5 (eln] = x*[nl) = —xf -l

If a real sequence is conjugate symmetric, then it isv@nsequence, and if
conjugate antisymmetric, then itasid.

Similarly, the Fourier transfornX (e/®) can be decomposed into a sum of
conjugate symmetric and antisymmetric parts:

X(7?) = Xe(e’?) + Xo(e’®),
where
Xo(1®) = S[X(e®) + X* ()
Xo(e1?) = S[X(?) ~ X" (7).
With these definitions, and letting
X(e/®) = Xg(e!®) + jX1(e/®),

the symmetry properties of the Fourier transform can be samsed as
follows:
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Sequencer[n] TransformX(e/®)

x*[n] X*(e™/?)
x*[—n] X*(e/®)
Re{x(n]} Xe(e/®)
Jim{x[n]} Xo(e7?)
Xe[n] Xr(e/?)
Xo[n] JX1(e7?)

Most of these properties can be proved by substituting mcekpression for
the Fourier transform. Additionally, for realr] the following also hold:

Real sequence[n] TransformX (e/®)

x[n] X(e/?) = X*(e™7®)
x[n] XRr(e/®) = Xg(e™/®)
x[n] Xr(e/®) = =Xy(e™7/®)
x[n] |X(e7)| = |X(e77)|
x[n] <X(e/?) = —<X(e7’/?)
Xe[n] XRr(e/?)

Xo[n] JX1(e’®)

9 Fourier transform theorems

Let X(e/?) be the Fourier transform offn]. The following theorems then
apply:
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TransformsX (e/®), Y(e/?) Property

Sequences(n], y[n]
ax[n] + by[n] aX(e/®) + bY(e/?) Linearity
x[n —ng] eIona X (e/?) Time shift
e/®0m x[n] X(el@—w0)) Frequency shift
x[—n] X(e77®) Time reversal
nx[n] jaXe) Frequency diff.
x[n] * y[n] X(e™1®)Y (e77?) Convolution
x[n]y[n] LT X(e70)Y(e/@=9)d0  Modulation

Some useful Fourier transform pairs are:

Fourier transform
1

e—J®ono

Sequence
8[n]

8[n — no]

Y e oo 278(w + 27k)

1 (—o0o<n< o)
1

a"uln] (la| <1) TE———
uln] o7 T Lkemoo T8(@ + 27k)
(n+ Da"uln] (la| <1) a7y
sin(wcn) X(e]w) — 1 |C()| < &
Tn 0 we < |a)| =7
_ O=n=M sifo(M+1)/2] ,— jwM/2
x[n] - . sin(w/2) e
otherwise
eJwon Y e oo 2m8(w — wo + 27k)
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