PART A

Digital signal processing

EEE4001F EXAM
 DIGITAL SIGNAL PROCESSING

University of Cape Town
 Department of Electrical Engineering

July 2017
3 hours

Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has five questions totalling 50 marks. You must answer all of them.
- Part B has five questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

1. Suppose $x[n]=u[n+1]$ and $g[n]=\left(\frac{1}{2}\right)^{n} u[n-1]$.
(a) Sketch $x[n]$ and $g[n]$.
(b) Find and plot $y[n]=g[n] * x[n]$.
(c) What is the z-transform $G(z)$? Draw a pole-zero plot and indicate the ROC.
(d) What is the DC gain of the system with impulse response $g[n]$?
2. A causal LTI system is described by the difference equation

$$
y[n]=2.5 y[n-1]-1.5 y[n-2]+3(x[n]-x[n-1])
$$

where $x[n]$ is the input and $y[n]$ is the output.
(a) Show that the system transfer function is

$$
H(z)=\frac{3}{1-3 / 2 z^{-1}}
$$

(b) Draw a pole-zero plot of $H(z)$ and indicate the region of convergence.
(c) Find the impulse response $h[n]$ of the system.
(d) Is the system stable?
3. Consider the signal below:

(a) Suppose an analog filter is constructed as follows:

Sketch the frequency response $H_{\text {eff }}(j \Omega)$ for $T=10^{-3}$ seconds, indicating clearly all frequencies of interest.
(b) Suppose $X\left(e^{j \omega}\right)$ is the input to the system below:

Sketch $X_{u}\left(e^{j \omega}\right), X_{f}\left(e^{j \omega}\right)$, and $Y\left(e^{j \omega}\right)$.
(c) Sketch $Y\left(e^{j \omega}\right)$ for the case where $X\left(e^{j \omega}\right)$ is the input to the system below:

4. Consider the system function

$$
H(z)=4 \frac{z+0.8}{z^{2}}
$$

(a) Sketch the frequency response magnitude $H\left(e^{j \omega}\right)$.
(b) What is the gain of the system for $\omega=0$ and $\omega=\pi \mathrm{rad} / \mathrm{sample}$?
(c) What is the phase of the system for $\omega=\pi / 2 \mathrm{rad} / \mathrm{sample}$?
(d) What type of filter does the system represent?
(e) Find the impulse response of the system.
5. Consider two LTI systems with impulse responses

$$
h_{1}[n]=u[-n-1] \quad \text { and } \quad h_{2}[n]=\delta[n-1]-\delta[n] .
$$

(a) Plot $h_{1}[n]$ and $h_{2}[n]$.
(b) Find the system functions $H_{1}(z)$ and $H_{2}(z)$ along with their ROCs.
(c) An LTI system with impulse response $h[n]$ is called invertible if there exists $h_{i}[n]$ such that $h[n] * h_{i}[n]=\delta[n]$. Are the two systems given above inverses of one another?
(d) Find the impulse response of the inverse system for

$$
h[n]=n u[n] .
$$

(e) What conditions must be poles and zeros of a causal and stable system satisfy for it to have a causal and stable inverse?
(10 marks)

PART B

Wavelets and frames

Problem 1:

Let $\varphi(t)$ denote the unit box function with the support $(0,1)$. Let $T(t)$ denote the convolution of $\varphi(t)$ with itself. Remember $T(0)=0, T(1)=0$, and $T(2)=0$. Let $S(t)$ denote the convolution of $T(t)$ with $\varphi(t)$.
(a) Calculate $S(t)$.
(8 marks)
(b) Plot the graph of $S(t)$.
(2 marks)
(Total: 10 marks)

Problem 2:

Consider the function $f(t)$ defined as follows:

$$
f_{n}(t)=\left\{\begin{array}{cc}
\sin \left(n 2 \pi \frac{t}{L}\right) & -\frac{L}{2} \leq t \leq \frac{L}{2} \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Calculate $\left\|f_{n}(t)\right\|_{2}$, the $L_{2}-$ norm of $f_{n}(t)$ for arbitrary n.
(3 marks)
(b) Let $\tilde{f}_{n}(t)$ refer to the normalized $f_{n}(t)$. Calculate the inner product $<\tilde{f}_{m}(t) \mid \tilde{f}_{n}(t)>$ in detail.
(3 marks)
(c) Express the resolution of identity operator $\hat{\mathbb{I}}$ in terms of the orthonormal basis $\left\{\tilde{f}_{n}(t) \mid n \in \hat{\mathbb{N}}\right\}$.
(4 marks)
(Total: 10 marks)

Problem 3:

Let the coefficients $h_{0}, h_{1}, h_{2}, h_{3}$ be defined as follows:

$$
h_{0}=\frac{1+\sqrt{3}}{4 \sqrt{2}}, \quad h_{1}=\frac{3+\sqrt{3}}{4 \sqrt{2}}, \quad h_{2}=\frac{3-\sqrt{3}}{4 \sqrt{2}}, \quad h_{3}=\frac{1-\sqrt{3}}{4 \sqrt{2}} .
$$

Consider the following dilation equation for the scaling function $\varphi(t)$ with its support being the interval $[0,3]$:

$$
\varphi(t)=h_{0}\{\sqrt{2} \varphi(2 t)\}+h_{1}\{\sqrt{2} \varphi(2 t-1)\}+h_{2}\{\sqrt{2} \varphi(2 t-2)\}+h_{3}\{\sqrt{2} \varphi(2 t-3)\}
$$

(a) Sample (evaluate) the functions at both sides of this equation successively at integer points $t=0, t=1, t=2$, and $t=3$. This process generates a 4×4 eigenvalue equation for the determination of $\varphi(0), \varphi(1), \varphi(2)$, and $\varphi(3)$. Provide the explicit expression for the resulting eigenvalue equation.
(2 marks)
(b) From the resulting 4×4 system of equations determine the values $\varphi(0)$ and $\varphi(3)$ first. Then determine the values for $\varphi(1)$ and $\varphi(2)$.
(2 marks)
(c) Using the equation above determine the values for $\varphi\left(\frac{1}{2}\right), \varphi\left(\frac{3}{2}\right)$, and $\varphi\left(\frac{5}{2}\right)$. (2 marks) Consider the following dilation equation for the wavelet $\psi(t)$ with its support being the interval $[-1,2]$:
$\psi(t)=-h_{0}\{\sqrt{2} \varphi(2 t-1)\}+h_{1}\{\sqrt{2} \varphi(2 t)\}-h_{2}\{\sqrt{2} \varphi(2 t+1)\}+h_{3}\{\sqrt{2} \varphi(2 t+2)\}$.
(d) Calculate the values for $\psi(-1), \psi\left(-\frac{1}{2}\right), \psi\left(\frac{1}{2}\right)$, and $\psi(2)$.
(4 marks)
(Total: 10 marks)

Problem 4:

(a) Do the discrete filter coefficients $\left\{a_{0}=\frac{1}{2 \sqrt{2}}, a_{1}=\frac{1}{\sqrt{2}}, a_{2}=\frac{1}{2 \sqrt{2}}\right\}$ constitute a low-pass, bandpass, or a high-pass filter?
(2 marks)
(b) Why? (Detailed calculations and a graph are required.)
(3 marks)
(c) Do the discrete filter coefficients $\left\{b_{0}=-\frac{1}{2 \sqrt{2}}, b_{1}=\frac{1}{\sqrt{2}}, b_{2}=-\frac{1}{2 \sqrt{2}}\right\}$ constitute a low-pass, bandpass, or a high-pass filter? (2 marks)
(d) Why? (Detailed calculations and a graph are required.)
(3 marks)

Problem 5:

Consider the frame vectors $\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}$, and \mathbf{f}_{4} defined as follows:

$$
\mathbf{f}_{\mathbf{1}}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{f}_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \quad \mathbf{f}_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right), \quad \mathbf{f}_{4}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

(a) Construct the frame operator S corresponding to the given frame vectors f_{1}, f_{2}, f_{3}, and f_{4}.
(3 marks)
(b) Construct the dual frame vectors $\tilde{\mathbf{f}}_{1}, \tilde{\mathbf{f}}_{2}, \tilde{\mathbf{f}}_{3}$, and $\tilde{\mathbf{f}}_{4}$
(3 marks)
(c) Express the resolution of identity (operator) in terms of the given frame vectors f_{1}, f_{2}, f_{3}, and \mathbf{f}_{4} and the constructed dual frame vectors $\tilde{\mathbf{f}}_{1}, \tilde{\mathbf{f}}_{2}, \tilde{\mathbf{f}}_{3}$, and $\tilde{\mathbf{f}}_{4}$.
(2 marks)
(d) Assuming a general vector

$$
\mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

demonstrate the analysis and synthesis steps by using the constructed expression for the identity operator.

Discrete-time Fourier transform properties

Sequeness $x[n], y[n]$	Tranforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d X}\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n_{x[n]}}$	$x\left(e^{j\left(\omega-\omega_{0}\right)}\right.$)	Frequency shift
$x[-n]$	$x\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$\frac{d X\left({ }^{\left.j j^{j \omega}\right)}\right.}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$		Modulation

Common discrete-time Fourier transform pairs

Z-transform properties

Common z-transform pairs

Sequence	Transorm	Roc
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z-1}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1-a z^{-1}}{1-a z^{-1}}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N}-N}{1-a z-1}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>\|r\|$

