PART A

Digital signal processing

EEE4001F EXAM DIGITAL SIGNAL PROCESSING

University of Cape Town Department of Electrical Engineering

July 2017

3 hours

Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has five questions totalling 50 marks. You must answer all of them.
- Part B has five questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

1. Suppose x[n] = u[n+1] and $g[n] = (\frac{1}{2})^n u[n-1]$.

- (a) Sketch x[n] and g[n].
- (b) Find and plot y[n] = g[n] * x[n].
- (c) What is the z-transform G(z)? Draw a pole-zero plot and indicate the ROC.
- (d) What is the DC gain of the system with impulse response g[n]?

(10 marks)

2. A causal LTI system is described by the difference equation

$$y[n] = 2.5y[n-1] - 1.5y[n-2] + 3(x[n] - x[n-1]),$$

where x[n] is the input and y[n] is the output.

(a) Show that the system transfer function is

$$H(z) = \frac{3}{1 - 3/2z^{-1}}.$$

(b) Draw a pole-zero plot of H(z) and indicate the region of convergence.

- (c) Find the impulse response h[n] of the system.
- (d) Is the system stable?

(10 marks)

3. Consider the signal below:

(a) Suppose an analog filter is constructed as follows:

Sketch the frequency response $H_{\rm eff}(j\Omega)$ for $T = 10^{-3}$ seconds, indicating clearly all frequencies of interest.

(b) Suppose $X(e^{j\omega})$ is the input to the system below:

Sketch $X_u(e^{j\omega}), X_f(e^{j\omega}), \text{ and } Y(e^{j\omega}).$

(c) Sketch $Y(e^{j\omega})$ for the case where $X(e^{j\omega})$ is the input to the system below:

(10 marks)

4. Consider the system function

$$H(z) = 4\frac{z+0.8}{z^2}.$$

(a) Sketch the frequency response magnitude $H(e^{j\omega})$.

(b) What is the gain of the system for $\omega = 0$ and $\omega = \pi$ rad/sample?

(c) What is the phase of the system for $\omega = \pi/2$ rad/sample?

(d) What type of filter does the system represent?

(e) Find the impulse response of the system.

(10 marks)

5. Consider two LTI systems with impulse responses

$$h_1[n] = u[-n-1]$$
 and $h_2[n] = \delta[n-1] - \delta[n]$.

(a) Plot $h_1[n]$ and $h_2[n]$.

- (b) Find the system functions $H_1(z)$ and $H_2(z)$ along with their ROCs.
- (c) An LTI system with impulse response h[n] is called invertible if there exists $h_i[n]$ such that $h[n] * h_i[n] = \delta[n]$. Are the two systems given above inverses of one another?
- (d) Find the impulse response of the inverse system for

h[n] = nu[n].

(e) What conditions must be poles and zeros of a causal and stable system satisfy for it to have a causal and stable inverse?

(10 marks)

PART B

Wavelets and frames

Problem 1:

Let $\varphi(t)$ denote the unit box function with the support (0, 1). Let T(t) denote the convolution of $\varphi(t)$ with itself. Remember T(0) = 0, T(1) = 0, and T(2) = 0. Let S(t) denote the convolution of T(t) with $\varphi(t)$.

(a) Calculate $S(t)$.	(8 marks)
(b) Plot the graph of $S(t)$.	(2 marks)
	(Total: 10 marks)

Problem 2:

Consider the function f(t) defined as follows:

$$f_n(t) = \begin{cases} \sin(n2\pi\frac{t}{L}) & -\frac{L}{2} \le t \le \frac{L}{2} \\ 0 & \text{elsewhere.} \end{cases}$$

(a) Calculate $||f_n(t)||_2$, the L_2 - norm of $f_n(t)$ for arbitrary n.

(3 marks)

- (b) Let $\tilde{f}_n(t)$ refer to the normalized $f_n(t)$. Calculate the inner product $\langle \tilde{f}_m(t) | \tilde{f}_n(t) \rangle$ in detail. (3 marks)
- (c) Express the resolution of identity operator $\hat{\mathbb{I}}$ in terms of the orthonormal basis $\{\tilde{f}_n(t)|n\in\hat{\mathbb{N}}\}.$ (4 marks)

(Total: 10 marks)

Problem 3:

Let the coefficients h_0 , h_1 , h_2 , h_3 be defined as follows:

$$h_0 = \frac{1+\sqrt{3}}{4\sqrt{2}}, \qquad h_1 = \frac{3+\sqrt{3}}{4\sqrt{2}}, \qquad h_2 = \frac{3-\sqrt{3}}{4\sqrt{2}}, \qquad h_3 = \frac{1-\sqrt{3}}{4\sqrt{2}}.$$

Consider the following dilation equation for the scaling function $\varphi(t)$ with its support being the interval [0, 3]:

$$\varphi(t) = h_0 \Big\{ \sqrt{2}\varphi(2t) \Big\} + h_1 \Big\{ \sqrt{2}\varphi(2t-1) \Big\} + h_2 \Big\{ \sqrt{2}\varphi(2t-2) \Big\} + h_3 \Big\{ \sqrt{2}\varphi(2t-3) \Big\}.$$

- (a) Sample (evaluate) the functions at both sides of this equation successively at integer points t = 0, t = 1, t = 2, and t = 3. This process generates a 4 × 4 eigenvalue equation for the determination of φ(0), φ(1), φ(2), and φ(3). Provide the explicit expression for the resulting eigenvalue equation. (2 marks)
- (b) From the resulting 4×4 system of equations determine the values $\varphi(0)$ and $\varphi(3)$ first. Then determine the values for $\varphi(1)$ and $\varphi(2)$. (2 marks)

(c) Using the equation above determine the values for $\varphi(\frac{1}{2}), \varphi(\frac{3}{2})$, and $\varphi(\frac{5}{2})$. (2 marks)

Consider the following dilation equation for the wavelet $\psi(t)$ with its support being the interval [-1, 2]:

$$\psi(t) = -h_0 \Big\{ \sqrt{2}\varphi(2t-1) \Big\} + h_1 \Big\{ \sqrt{2}\varphi(2t) \Big\} - h_2 \Big\{ \sqrt{2}\varphi(2t+1) \Big\} + h_3 \Big\{ \sqrt{2}\varphi(2t+2) \Big\}.$$

(d) Calculate the values for $\psi(-1)$, $\psi(-\frac{1}{2})$, $\psi(\frac{1}{2})$, and $\psi(2)$.

(4 marks)

(Total: 10 marks)

Problem 4:

(a)	Do the discrete filter coefficients $\left\{a_0 = \frac{1}{2\sqrt{2}}, a_1 = \frac{1}{\sqrt{2}}, a_2 = \frac{1}{2\sqrt{2}}\right\}$ constitute a lo bandpass, or a high-pass filter? (2)	ow-pass, 2 marks)
(b)	Why? (Detailed calculations and a graph are required.) (A	3 marks)
(c)	Do the discrete filter coefficients $\left\{b_0 = -\frac{1}{2\sqrt{2}}, b_1 = \frac{1}{\sqrt{2}}, b_2 = -\frac{1}{2\sqrt{2}}\right\}$ constitute low-pass, bandpass, or a high-pass filter? (2)	a 2 marks)
(d)	Why? (Detailed calculations and a graph are required.) (A	3 marks)
	(Total: 10	0 marks)

Problem 5:

Consider the frame vectors f_1 , f_2 , f_3 , and f_4 defined as follows:

$$\mathbf{f_1} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \qquad \mathbf{f_2} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \qquad \mathbf{f_3} = \begin{pmatrix} -1\\-1\\1 \end{pmatrix}, \qquad \mathbf{f_4} = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}.$$

- (a) Construct the frame operator S corresponding to the given frame vectors f₁, f₂, f₃, and f₄.
 (3 marks)
- (b) Construct the dual frame vectors $\tilde{\mathbf{f}}_1$, $\tilde{\mathbf{f}}_2$, $\tilde{\mathbf{f}}_3$, and $\tilde{\mathbf{f}}_4$. (3 marks)
- (c) Express the resolution of identity (operator) in terms of the given frame vectors f_1 , f_2 , f_3 , and f_4 and the constructed dual frame vectors \tilde{f}_1 , \tilde{f}_2 , \tilde{f}_3 , and \tilde{f}_4 . (2 marks)
- (d) Assuming a general vector

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix},$$

demonstrate the analysis and synthesis steps by using the constructed expression for the identity operator. (2 marks)

(Total: 10 marks)

Discrete-time Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n - n_d]$	$e^{-j\omega n} dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shi
x[-n]	$X(e^{-j\omega})$	Time reversa
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency dif
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$	Modulation

Common discrete-time Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta[n - n_0]$	$e^{-j\omega n_0}$
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
$a^n u[n] \ (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
$(n+1)a^n u[n] \ (a <1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$

Z-transform properties

Sequences $x[n], y[n]$	Transforms $X(z), Y(z)$	ROC	Property
ax[n] + by[n]	aX(z) + bY(z)	ROC contains $R_x \cap R_y$	Linearity
$x[n - n_d]$	$z^{-n}dX(z)$	$ROC = R_x$	Time shift
$z_0^n x[n]$	$X(z/z_0)$	$ROC = z_0 R_x$	Frequency scale
$x^{*}[-n]$	$X^{*}(1/z^{*})$	$ROC = \frac{1}{R_T}$	Time reversal
nx[n]	$-z \frac{dX(z)}{dz}$	$ROC = R_x$	Frequency diff.
x[n] * y[n]	X(z)Y(z)	ROC contains $R_x \cap R_y$	Convolution
$x^{*}[n]$	$X^{*}(z^{*})$	$ROC = R_x$	Conjugation

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n - 1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n - m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^{n}u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1-r\cos(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r