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PART A

Basic digital signal processing theory.

. A sequence z[n] has a zero-phase DTFT X (e7“) given below:

1 X(e3%)

L | L

-7 —7/3 /3 ™

Sketch the DTFT of the sequence 2x[n]e7™"/3,
(5 marks)

Information
The exam is closed-book.
There are two parts to this exam.
Part A has six questions totalling 50 marks. You must answer all of them.
Part B has fen questions totalling 50 marks. You must answer all of them.

Parts A and B must be answered in different sets of exam books, which will be collected
separately.

A table of standard Fourier transform and z-transform pairs appears at the end of this
paper.

You have 3 hours.

. Find the impulse response corresponding to the system function

722 — 4z
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H(z)=

for each possible region of convergence. In each case comment on the causality and
stability properties of the system.

(10 marks)

. Let z[n] be a discrete-time signal obtained by sampling the continuous signal z(¢) at a

sampling rate fs = 1/7 Hz:
z[n] = z(nT).

Assume that no aliasing occurs. Describe by sketching a block diagram and providing a
clear explanation, how you would implement a discrete-time system with input z:[n] and
output y[n] that delays z[n] by half a sample, so

y[n] = z(nT — T/2).

Hint: make use of upsamplers, downsamplers, and ideal filters.

(5 marks)




4. Consider the following discrete-time sequences:
z[n] = 26[n] + 36[n — 1] + 6[n — 2] + 5d[n — 3]
y[n] = d[n] — 26[n — 3].

(a) Write an expression for the 4-point DFT X [k] of z[n/|, and find the value X [1].

(b) Find the 4-point inverse DFT of X [k]W}, where X [k] is the 4-point DFT of z[n] and
Wy = eJ xS .

(c) Find the 4-point circular convolution of z[n] with y[n].

(d) Explain how you would calculate the result for part (c) using the fast Fourier transform
(FFT).

(e) How could you use the FFT to calculate the linear convolution of z[n] and y[n]?

(10 marks)

. Consider a causal LTI system with the system function

1—atz7t
H(z) = T a1
where a is real.
(a) Write a difference equation that relates the input and the output of this system
(b) For what range of values of a is the system stable?
(c) For a = 1/2 plot the pole-zero diagram and show the ROC.
(d) Find the impulse response h[n] for this system for a = 1/2.
(e) Determine and plot the magnitude response of this system for ¢ = 1/2. What type of
system is it?
(10 marks)

5. A discrete-time, causal, linear time-invariant filter H(z) has
six zeros located at: 2= eFIT/8 5 =TT/ L= 11

and six poles located at: z = +50.95, z = 0.95¢97/20_ 5 — 0.95¢F7117/20,

(a) Plot the pole-zero diagram of H (z) in the z-plane and provide its region of convergence.

(b) Sketch the magnitude response | H (e/*)| directly from the pole-zero plot, and indicate the

approximate gain at w = /2.
(c) What type of frequency-selective filter is H (e“’)? Explain your answer.

(d) Answer the following questions, explaining your answers:
i. Is H(z) an IR or FIR filter?
ii. Is H(z) a stable filter?
iii. Is h[n], the impulse response of the filter, a real function?
(10 marks)




PART B

Wavelets and frames.

P1: Let the function f(¢) be defined by

1) = sin(nmt) -1<t<1 i

0 elsewhere

Pl-a: Calculate || f(¢)||2, the Lo—norm of f(t).

(2 marks)
P1-b: Let f(¢) denote f(t) normalized; i.e., || f(£)||2 = 1. Write down the expression for
).
(2 marks)

P2: Consider the following complete set of orthonormal functions on the interval (—1,1):

1
—, {cos (n7t) In € N} | {sin (n7t) |n € N 2
7 {cos (nt) | } {sin (nt) | } @
Utilizing Dirac’s bracket notation, consider the following resolution of identity for the
Ly—space of functions with support (—1,1):

1 1
[=|—=><—7| + cos (nmt) >< cos (nnt
\\/é \/5\ %I (nmt) (nt) |
+ Z | sin (n7rt) >< sin (n7t) | 3)
neN

Let the function f(¢) satisfy Dirichlet’s conditions on the interval (—1, 1), and be zero
outside this interval. In bracket notation write | f(¢) > for f(t). Operate (3) from the left
onto the function | f(¢) > to obtain:

If(t) >= |% >< %Lf(’[‘) > 4+ Z|c0s (nmt) >< cos (nt) | f(t) >
neN

+ Z | sin (n7rt) >< sin (nmt) | f(t) >
neN

“

It is self-evident that certain groups of terms in (4) vanish for even- or odd-functions, and
thus the Eq. (4) simplifies for such functions.
P2-a: Simplify the expression on the right-hand side of the Eq. (4) for functions f(¢) satisfying
the condition f(—t) = f(¢) on the interval (—1,1).
(2 marks)
P2-b: Deduce from your result obtained in P2-a the expression for the resolution of identity,
which characterizes the space of even functions with support (—1,1).

(2 marks)

P2-c: Simplify the expression on the right-hand side of the Eq. (4) for functions f(t) satisfying
the condition f(—t) = —f(t) on the interval (—1,1).

(2 marks)

P2-d: Deduce from your result obtained in P2-c the expression for the resolution of identity,
which characterizes the space of odd functions with support (—1,1).

(2 marks)




P3: Let the functions ¢(t) and ¢ (¢) denote the scaling function and the wavelet for a

Multiresolution Analysis (MRA) in Hilbert space. Let the function ((t) generate the

function space 1. Let the function ¢ (t) and its compressed versions generate the spaces
Wo, Wi, Wa, - - -.

Assume the following representation for f(t) is valid:

[e’e]

fe=> cw(tfkwfj i d; k239 (2't — k) )

k=—o00 =0 k=—o0

Consider the right-hand side of (5).

P3-a:
P3-b:
P3-c:
P3-d:
P3-e:

P3-f:

Why is the first term a single series?

Why is the second term (following the summation sign) a double series?
Write down the expression for cy,.

Write down the expression for d; .

Utilize Dirac’s bracket notation, and consider the results obtained in P3-c¢ and P3-d. In the
light of your results deduce the expression for the resolution of identity from (5).
Let j run from —oo to co. Considering the result obtained in the previous step, deduce the

expression for the resolution of identity, when j varies from —oo to co.

(6 marks)

P4-a:

P4-b:

Given the general ‘‘low pass’” filter coefficient i (n) write down the two-scale dilation
equation for the scaling function.

(2 marks)

Given the general ‘‘high pass’’ filter coefficients g(n) write down the two-scale dilation
equation for the wavelet.

(2 marks)

P5-a:

P5-b:

P5-c:

P5-d:

Determine the filter coefficients h(n) for the triangle (piece-wise linear) scaling function.
(2 marks)

The coefficients h(n), characterizing the triangle (piece-wise linear) scaling function,
constitute a ‘‘low pass’’ filter. Why?

(2 marks)
Determine the filter coefficients g(n) for the triangle (piece-wise linear) wavelet.
(2 marks)

The coefficients g(n), characterizing the triangle (piece-wise linear) wavelet, constitute a
“‘high pass’’ filter. Why?

(2 marks)

P6: Given a fairly general function f(t). Apply Meyer’s orthogonalization technique to f(¢).

(4 marks)

P7: Using the general dilation equation for the wavelet v (¢), express the three-generations

compressed normalized wavelet

259(2% — m)

in terms of 22 (24 — n) summed over n.

(4 marks)

P8: The Mexican-hat wavelet M, (¢) can be obtained by taking the second derivative of the

negative Gaussian function:

Sketch the Mexican-hat wavelet M, (¢).

(2 marks)




P9: Ordinarily signal-analysis and signal -synthesis are carried out by using a system of

orthonormal basis (ONB) functions. However, if the orthonormality condition of the
analysis basis functions is violated, a system of dual basis functions is required for
accomplishing the synthesis of signals. The following problem illustrates the content of
this concept in terms of vectors.

Let |e; > and |ez > be unit normal vectors in the (x, y)—plane.

Let the vectors |f; > and |f> > be defined by the following equations:

|f1 > = 2‘61 > +1‘62 > (6a)
fo > = 2le; > +4les > (6b)

Evidently, the vectors |f; > and |f, > are neither normal nor orthogonal.
Provide a sketch of the vectors |f; > and |f, >.

Construct the dual vectors < ¥1| and < Fg\ corresponding to |f; > and |f >, respectively,
first graphically and then analytically.

Employ Dirac’s bracket notation.

Resolve the identity operator I in the plane (i.e., the 2 X 2 unity matrix) in terms of the
ket-vectors |f; > and |f; > and their dual bra-vectors < f;| and < f5].

(3 marks)

P10: In the foregoing problem it was mentioned that customarily signal-analysis and

signal-synthesis are carried out by using a system of orthonormal basis (ONB) functions.
However, if the analysis functions are over-complete (they constitute a frame), a system of
over-complete functions (dual frames) is required for accomplishing the synthesis of
signals. The following problem illustrates the content of this concept in terms of vectors.

Let |e; > and |e; > denote unit normal vectors in the (z, y)—plane.

Let the ket vectors |f; >, |f2 > and |f5 > be defined by the following equations:

[fi> = ler> (Ta)
fo> = le; > —|ex > (7b)
fs > = le; > +|ex > (7¢)

The over-complete set of vectors |f; >, |f2 > and |f3 > constitutes a frame.

The dual frame (bra vectors) < f;|, < fo| and < 3| are given as follows:

~ 1

<fi| = g<e1\ (8a)
~ 1 1

<f2‘ = g<€1‘—5<62‘ (8b)
~ 1 1

<f3‘ = §<el\+§<e2\ (8¢)

Resolve the identity operator I in the plane (i.e., the 2 X 2 unity matrix) in terms of the
fy > and |f3 > and their dual frame vectors < fi|, < f5| and < f3].

(7 marks)

frame vectors |f; >,




Fourier transform properties

Sequences z[n], y[n] Transforms X (e7*), Y (e7%) Property
azx[n] + by[n] aX(e?) + bY (e?) Linearity
z[n — ng) e IUnd X () Time shift
€0 z[n] X (ed(w=wo)y Frequency shift
z[—n] X(e %) Time reversal
nzn] j %ﬁ}]w) Frequency diff.
z[n] * y[n] X(e™7*)Y(e™7¥) Convolution
z[n]y[n] = [T X()Y (1 )do Modulation

Common Fourier transform pairs

Fourier transform

Sequence
6[n] 1
8[n — no] e~Iwno
1 (—oo <n < o0) S oo 2w (w + 27k)
amuln] (ol < 1) L
u[n] H+N + 2 ohl oo WO (w + 27k)
(n+Dauln] (la] < 1) T
T P
0 we < |w| <7
wln] = {(1) 0< TLIS M sin[:i;r(]évi-}/-;;/2]e—jml\l/2
otherwise
elwon Don oo 28 (w — wo + 2mk)

Common z-transform pairs

Sequence Transform ROC

é[n] 1 All z
u[n] 17i71 [z] > 1
—u[—n —1] 17i,1 lz] <1

S§ln —m] z~™ All z except 0 or co
a"uln] [z > |a]
—a"u[-n —1] |z| < |al
na™un] |z| > |a|
—na"u[-n — 1] |z| < |al
an 0<n<N-1,

{U otl;rwis; I=| >0
cos(won)u[n] % |z] > 1
1—7cos(wg)z ! |z > r

" cos(won)u[n|

1—27cos(wg)z— L +r22—2




