# EEE4001F: Digital Signal Processing

Class Test 1

11 March 2016

## **SOLUTIONS**

Name:

Student number:

#### Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.
- An information sheet is attached.

1. (5 marks) A discrete-time system is governed by the following relation:

$$y[n] = \sum_{k=0}^{2} x[n-k] + x[0].$$

- (a) Find the output when the input is  $x_1[n] = u[n]$ .
- (b) Find the output when the input is  $x_2[n] = u[n-1]$ .
- (c) Is the system time invariant?

The input-output relationship can be written as

$$y[n] = x[n] + x[n-1] + x[n-2] + x[0],$$

and for each n the required values can be found by direct substitution.

(a) Response for  $x_1[n] = u[n]$  is  $y_1[n]$  below:



(b) Response for  $x_2[n] = u[n-1]$  is  $y_2[n]$  below:



(c) Since  $x_2[n] = x_1[n]$  but  $y_2[n] \neq y_1[n]$  the system is not time invariant.

2. (5 marks) Determine the DTFT of the sequence  $x[n] = \alpha^n u[-n-1]$  for  $|\alpha| > 1$ .

Can approach the problem from first principles:

$$X(e^{j\omega}) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n = -\infty}^{\infty} \alpha^n u[-n - 1]e^{-j\omega n} = \sum_{n = -\infty}^{-1} \alpha^n e^{-j\omega n}$$
$$= \sum_{n = 1}^{\infty} \alpha^{-n} e^{j\omega n} = -1 + \sum_{n = 0}^{\infty} (\alpha^{-1} e^{j\omega})^n.$$

Since we know that  $|\alpha| > 1$  we have  $|\alpha^{-1}e^{j\omega}| < 1$ , so this infinite series converges to

$$X(e^{j\omega}) = -1 + \frac{1}{1 - \alpha^{-1}e^{j\omega}} = \frac{\alpha^{-1}e^{j\omega}}{1 - \alpha^{-1}e^{j\omega}}$$

Alternatively one could use the given z-transform pair

$$-\alpha^n u[-n-1] \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad \frac{1}{1-\alpha z^{-1}} \qquad |z| < |\alpha|$$

to obtain

$$\alpha^n u[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} -\frac{1}{1-\alpha z^{-1}} \quad |z| < |\alpha|.$$

Thus

$$H(z) = \frac{-1}{1 - \alpha z^{-1}} = \frac{z}{\alpha - z} = \frac{\alpha^{-1}z}{1 - \alpha^{-1}z}$$
 for  $|z| < |\alpha|$ .

Now since  $|\alpha| > 1$  the ROC includes the unit circle and we can write

$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}} = \frac{\alpha^{-1}e^{j\omega}}{1 - \alpha^{-1}e^{j\omega}},$$

as before.

- 3. (5 marks) Suppose a sequence x[n] has DTFT  $X(e^{j\omega})$ . Find the time-domain inverses of each of the following:
- (a)  $Y_1(e^{j\omega}) = 2X(e^{-j(\omega-\omega_0)})$ , and
- (b)  $Y_2(e^{j\omega}) = 3e^{j4\omega}X(e^{j(\omega-\omega_0)}).$

Express your answers in terms of x[n].

(a) Applying the time reversal property to the given pair yields

$$x[-n] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(e^{-j\omega}).$$

Applying frequency shifting to this gives the pair

$$e^{j\omega_0 n}x[-n] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(e^{-j(\omega-\omega_0)}).$$

Finally from linearity

$$2e^{j\omega_0 n}x[-n] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad 2X(e^{-j(\omega-\omega_0)}).$$

Thus  $y_1[n] = 2e^{j\omega_0 n}x[-n]$ .

(b) Using frequency shifting on the given pair yields

$$e^{j\omega_0 n}x[n] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(e^{j(\omega-\omega_0)}).$$

Now time shift with  $n_d = -4$  on this pair gives

$$e^{j\omega_0(n+4)}x[n+4] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad e^{j4\omega}X(e^{j(\omega-\omega_0)})$$

Using linearity provides the required result as  $y_2[n] = 3e^{j\omega_0(n+4)}x[n+4]$ .

4. (5 marks) Consider two discrete-time systems with the following impulse responses:

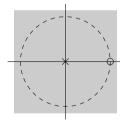
$$h_1[n] = \delta[n] - \delta[n-1]$$
 and  $h_2[n] = u[n]$ .

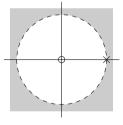
- (a) Are the systems causal? Why?
- (b) Using time-domain reasoning show that the systems are inverses of one another.
- (c) Draw pole-zero plots of the system functions in each case.
- (a) In both cases the impulse response satisfies h[n]=0 for n<0 so the systems are causal.
- (b) The combined impulse response will be

$$h[n] = h_1[n] * h_2[n] = (\delta[n] - \delta[n-1]) * u[n] = \delta[n] * u[n] - \delta[n-1] * u[n]$$
  
=  $u[n] - u[n-1] = \delta[n],$ 

so the output of the combined system will be identical to the input. Thus the systems are inverses of one another.

(c) The z-transform of  $h_1[n]$  is  $H_1(z) = 1 - z^{-1}$  (ROC all z) and the transform of  $h_2[n]$  is  $H_2(z) = 1/(1-z^{-1})$  (ROC |z| > 1). The pole-zero plots are therefore as follows (left  $H_1(z)$  and right  $H_2(z)$ :





### Fourier transform properties

| Sequences $x[n], y[n]$ | Transforms $X(e^{j\omega}), Y(e^{j\omega})$                                       | Property        |
|------------------------|-----------------------------------------------------------------------------------|-----------------|
| ax[n] + by[n]          | $aX(e^{j\omega}) + bY(e^{j\omega})$                                               | Linearity       |
| $x[n-n_d]$             | $e^{-j\omega n_d}X(e^{j\omega})$                                                  | Time shift      |
| $e^{j\omega_0 n}x[n]$  | $X(e^{j(\omega-\omega_0)})$                                                       | Frequency shift |
| x[-n]                  | $X(e^{-j\omega})$                                                                 | Time reversal   |
| nx[n]                  | $j\frac{dX(e^{j\omega})}{d\omega}$                                                | Frequency diff. |
| x[n] * y[n]            | $X(e^{-j\omega})Y(e^{-j\omega})$                                                  | Convolution     |
| x[n]y[n]               | $\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$ | Modulation      |

#### Common Fourier transform pairs

| Sequence                                                                     | Fourier transform                                                                                       |  |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| $\delta[n]$                                                                  | 1                                                                                                       |  |
| $\delta[n-n_0]$                                                              | $e^{-j\omega n_0}$                                                                                      |  |
| $1  (-\infty < n < \infty)$                                                  | $\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$                                                |  |
| $a^n u[n]  ( a  < 1)$                                                        | $\frac{1}{1-ae^{-j\omega}}$                                                                             |  |
| u[n]                                                                         | $\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$                      |  |
| $(n+1)a^nu[n]  ( a <1)$                                                      | $\frac{1}{(1-ae^{-j\omega})^2}$                                                                         |  |
| $\frac{\sin(\omega_C n)}{\pi n}$                                             | $X(e^{j\omega}) = \begin{cases} 1 &  \omega  < \omega_c \\ 0 & \omega_c <  \omega  \le \pi \end{cases}$ |  |
| $x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$ | $\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$                                            |  |
| $e^{j\omega_0 n}$                                                            | $\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$                                     |  |

### Common z-transform pairs

| Sequence                                                                     | Transform                                                                       | ROC                          |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------|
| $\delta[n]$                                                                  | 1                                                                               | All z                        |
| u[n]                                                                         | $\frac{1}{1-z-1}$                                                               | z  > 1                       |
| -u[-n-1]                                                                     | $\frac{1}{1-z-1}$                                                               | z  < 1                       |
| $\delta[n-m]$                                                                | $z^{-m}$                                                                        | All $z$ except 0 or $\infty$ |
| $a^n u[n]$                                                                   | $\frac{1}{1-az^{-1}}$                                                           | z  >  a                      |
| $-a^nu[-n-1]$                                                                | $\frac{1}{1-az^{-1}}$                                                           | z  <  a                      |
| $na^nu[n]$                                                                   | $\frac{az^{-1}}{(1-az^{-1})^2}$                                                 | z  >  a                      |
| $-na^nu[-n-1]$                                                               | $\frac{az^{-1}}{(1-az^{-1})^2}$                                                 | z  <  a                      |
| $\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$ | $\frac{1-a^{N}z^{-N}}{1-az^{-1}}$                                               | z  > 0                       |
| $\cos(\omega_0 n)u[n]$                                                       | $\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$                 | z  > 1                       |
| $r^n \cos(\omega_0 n) u[n]$                                                  | $\frac{1 - r \cos(\omega_0) z^{-1}}{1 - 2r \cos(\omega_0) z^{-1} + r^2 z^{-2}}$ | z  > r                       |
|                                                                              |                                                                                 |                              |