EEE4001F: Digital Signal Processing

Class Test 1
20 March 2013

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

2. (5 marks) A linear time-invariant system has an impulse response given by $h[n]=a^{-n} u[-n], 0<a<1$, where $u[n]$ is the unit step sequence

$$
u[n]= \begin{cases}1, & n \geq 0 \\ 0, & n<0\end{cases}
$$

Determine the response to the input $x[n]=u[n]$.

We want to find the output

$$
y[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=-\infty}^{\infty} a^{-k} u[-k] u[n-k]
$$

for each value of n. Since $u[-k]$ is zero for $k \geq 1$, and is otherwise 1 , the sum can be truncated and the expression written as

$$
y[n]=\sum_{k=-\infty}^{0} a^{-k} u[n-k]=\sum_{m=0}^{\infty} a^{m} u[n+m]
$$

with $m=-k$. Two cases can now occur. If $n \geq 0$ then $u[n+m]$ in the sum is always one and

$$
y[n]=\sum_{m=0}^{\infty} a^{m}=\frac{1}{1-a} .
$$

Alternatively, if $n<0$ then the first nonzero term in the sum occurs when $m=-n$ so

$$
\begin{aligned}
y[n] & =\sum_{m=-n}^{\infty} a^{m}=a^{-n}+a^{-n+1}+a^{-n+2}+\cdots \\
& =a^{-n}\left(1+a^{-1}+a^{-2}+\cdots\right)=\frac{a^{-n}}{1-a} .
\end{aligned}
$$

The response is therefore

$$
y[n]= \begin{cases}a^{-n} \frac{1}{1-a} & n<0 \\ \frac{1}{1-a} & n \geq 0\end{cases}
$$

3. (5 marks) Consider two discrete-time LTI systems which are characterized by thei impulse responses $h_{1}[n]=\delta[n]-\delta[n-1]$ and $h_{2}[n]=u[n]$.
(a) Determine whether these two LTI systems are inverses of each other. Justify your answer
(b) Determine whether these systems are stable, memory-less, and causal. Justify your answer.
(a) Suppose $x[n]$ is the input to the first system. The output is then $y_{1}[n]=h_{1}[n] * x[n]$. If this signal is put into the second system the output is

$$
\begin{aligned}
z[n]=h_{2}[n] * y_{1}[n]= & h_{2}[n] * h_{1}[n] * x[n] . \text { However, } \\
h_{1}[n] * h_{2}[n] & =(\delta[n]-\delta[n-1]) * u[n]=\delta[n] * u[n]-\delta[n-1] * u[n] \\
& =u[n]-u[n-1]=\delta[n] .
\end{aligned}
$$

Thus we see that $z[n]=x[n]$ and the systems are inverses of one another.
(b) The impulse response $h_{1}[n]=\delta[n]-\delta[n-1]$ corresponds to a backward difference system. It is causal because the output at n only depends on the input at n and $n-1$, none of which are in the future Memory is required to store input at $n-1$. Since $\sum_{n=-\infty}^{\infty}\left|h_{1}[n]\right|=2<\infty$ the system is stable. The impulse response $h_{2}[n]=u[n]$ corresponds to an accumulator system and has the following input-output relationship:

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] u[n-k]=\sum_{k=-\infty}^{n} x[k]
$$

Since the impulse response is right-sided the system is causal, and because the output at time n depends on all inputs up to n the system requires memory. Furthermore, since the unit step input yields an unbounded output the system is not stable (or alternatively, it is not stable since $\left.\sum_{n=-\infty}^{\infty}\left|h_{2}[n]\right|=\sum_{n=0}^{\infty} 1 \rightarrow \infty\right)$.
4. (5 marks) An LTI system is described by the input-output relation

$$
y[n]=x[n]+2 x[n-1]+x[n-2] .
$$

(a) Determine the impulse response $h[n]$
(b) Is this a stable system?
(c) Show that the frequency response of the system can be written as

$$
H\left(e^{j \omega}\right)=2 e^{-j \omega}(\cos (\omega)+1)
$$

(d) Plot the magnitude and phase of $H\left(e^{j \omega}\right)$
(e) Now consider a new system whose frequency response is $H_{1}\left(e^{j \omega}\right)=H\left(e^{j(\omega+\pi)}\right)$. Determine $h_{1}[n]$, the impulse response of the new system.
(a) The impulse response is the output when the input is $x[n]=\delta[n]$, so

$$
h[n]=\delta[n]+2 \delta[n-1]+\delta[n-2] .
$$

(b) The system is stable because the impulse response is absolutely summable

$$
\sum_{n=-\infty}^{\infty} h[n]=1+2+1=4<\infty
$$

(c) The z-transform of the system is

$$
H(z)=1+2 z^{-1}+z^{-2}=\left(1+z^{-1}\right)\left(1+z^{-1}\right)
$$

with ROC all z. Evaluating at $z=e^{j \omega}$ gives the Fourier transform:

$$
H\left(e^{j \omega}\right)=1+2 e^{-j \omega}+e^{-j 2 \omega}=e^{-j \omega}\left(e^{j \omega}+2+e^{-j \omega}\right)=2 e^{-j \omega}(\cos (\omega)+1)
$$

(d) The magnitude response is $\left|H\left(e^{j \omega}\right)\right|=2(\cos (\omega)+1)$ and the phase response is $\angle H\left(e^{j \omega}\right)=-\omega$. Plot is a raised cosine with maximum value 4 for the magnitude and a linear function with slope -1 for the phase.
(e) If the Fourier transform of $h[n]$ is $H\left(e^{j \omega}\right)$ then the frequency shift property is

$$
e^{j \omega_{0} n} h[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} e^{j \omega_{0} n} h[n] e^{-j \omega n}=\sum_{n=-\infty}^{\infty} h[n] e^{-j\left(\omega-\omega_{0}\right) n}=H\left(e^{j\left(\omega-\omega_{0}\right)}\right) .
$$

Taking $\omega_{0}=-\pi$ gives

$$
h_{1}[n]=e^{-j \pi n} h[n]=(-1)^{n} h[n]=\delta[n]-2 \delta[n-1]+\delta[n-2] .
$$

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d} X\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0} n} x[n]$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$X\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	$j \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right) Y\left(e^{-j \omega}\right)$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform
$\delta[n]$	1
$\delta\left[n-n_{0}\right]$	$e^{-j \omega n_{0}}$
$1(-\infty<n<\infty)$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$
$a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{1-a e^{-j \omega}}$
$u[n]$	$\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$
$(n+1) a^{n} u[n] \quad(\|a\|<1)$	$\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$
$\frac{\sin \left(\omega_{c} n\right)}{\pi n}$	$X\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\omega\| \leq \pi\end{cases}$
$x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$	$\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$
$e^{j \omega_{0} n}$	$\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z-1}$	$\|z\|<\|a\|$
$n a^{n} u[n]$	$\frac{\frac{a z-1}{}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N} z^{-N}}{1-a z^{-1}}$	$\|z\|>0$
$\cos \left(\omega_{0} n\right) u[n]$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>r$

