EEE4001F: Digital Signal Processing

Class Test 1

16 March 2012

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.

1. (5 marks) For the signal x[n] below

plot the following:

(a)
$$y_1[n] = x[n] + x[-n]$$

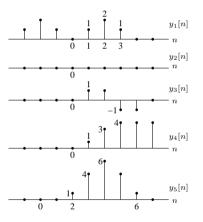
(b)
$$y_2[n] = x[n]x[-n]$$

(c)
$$y_3[n] = x[n] - x[n-1]$$

(d)
$$y_4[n] = \sum_{k=-\infty}^{n} x[k]$$

(e)
$$y_5[n] = x[n] * x[n]$$
.

Plots follow:



2. (5 marks) For what values of ω is the signal $x[n] = e^{j\omega n}$ periodic with a period of 8?

For x[n] to be periodic with period N we require that x[n] = x[n+N] for all n. For the given x[n] this requires that

$$e^{j\omega n} = e^{j\omega(n+N)} = e^{j\omega N}e^{j\omega n}$$

for all n, which means that $e^{j\omega N}=1=e^{j2\pi k}$ for any integer k. Thus ω must satisfy

$$\omega = \frac{2\pi k}{N} = \frac{2\pi}{8}k = \frac{\pi}{4}k$$

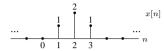
for any integer k. The set of frequencies ω for which the signal is periodic with a period of 8 is therefore

$$\omega \in \left\{ \dots, -\frac{3\pi}{4}, -\frac{\pi}{2}, -\frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \dots \right\}.$$

3. (5 marks) Suppose x[n] has the DTFT $X(e^{j\omega})$, and consider the signal y[n] defined as follows:

$$y[n] = \begin{cases} x[n/2] & n \text{ even} \\ 0 & n \text{ odd.} \end{cases}$$

(a) Plot y[n] if x[n] is the following:



- (b) Find a general expression for the DTFT $y(e^{j\omega})$ of y[n] in terms of $X(e^{j\omega})$.
- (a) The signal is expanded on the n axis as follows:

(b) Since

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y[n]e^{-j\omega n}$$

$$= \dots + y[-3]e^{j\omega 3} + y[-2]e^{j\omega 2} + y[-1]e^{j\omega 1} + y[0]e^{j\omega 0} + y[1]e^{-j\omega 1}$$

$$+ y[2]e^{-j\omega 2} + y[3]e^{-j\omega 3} + \dots$$

$$= \dots + 0e^{j\omega 3} + x[-1]e^{j\omega 2} + 0e^{j\omega 1} + x[0]e^{j\omega 0} + 0e^{-j\omega 1}$$

$$+ x[1]e^{-j\omega 2} + 0e^{-j\omega 3} + \dots$$

$$= \dots + x[-1]e^{j\omega 2} + x[0]e^{j\omega 0} + x[1]e^{-j\omega 2} + \dots = \sum_{n=-\infty}^{\infty} x[n]e^{-j(2\omega)n}$$

we evidently have $Y(e^{j\omega}) = X(e^{j(2\omega)})$, which is a compression of the signal on the ω axis.

4. (5 marks) A linear time-invariant system has system function

$$H(z) = \frac{6z - 2}{6z - 3},$$
 $|z| > 1/2.$

Find the impulse response of a stable inverse system. Is this inverse system causal?

The system function can be written as

$$H(z) = \frac{z - 1/3}{z - 1/2} = \frac{1 - 1/3z^{-1}}{1 - 1/2z^{-1}}$$

so the inverse is

$$G(z) = \frac{z - 1/2}{z - 1/3} = \frac{1 - 1/2z^{-1}}{1 - 1/3z^{-1}}.$$

This has a pole at z=1/3, so the two possible ROCs are |z|<1/3 and |z|>1/3. If |z|>1/3 then the inverse system is stable (ROC contains the unit circle) and it will also be causal (ROC extends out to infinity).

The inverse in this case is the right-sided sequence

$$h[n] = (1/3)^n u[n] - \frac{1}{2} (1/3)^{n-1} u[n-1].$$

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$rac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z-N}{1-az-1}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r