EEE4001F: Digital Signal Processing

Class Test 1

17 March 2011

Name:		
Student number:		

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.

1. (5 marks) If x[n] is the signal below

then plot the following:

(a)
$$y_1[n] = x[2n-2]$$

(b)
$$y_2[n] = x[-n-1]$$

(c)
$$y_3[n] = x[n] * \delta[n-1]$$

(d)
$$y_4[n] = x[n-1] * u[n-1]$$

(e)
$$y_5[n] = x[n] - x[n-1]$$
.

2. (5 marks) Consider the system below

where
$$h[n] = \delta[n] - 2\delta[n-1] - \delta[n-2]$$
.

- (a) Find $H(e^{j\omega})$, the Fourier transform of h[n].
- (b) Find and plot the effective impulse response $h_{\text{eff}}[n]$ linking the input x[n] and the output y[n].
- (c) Give an expression for the effective system transfer function $H_{\rm eff}(e^{j\omega})$ in terms of $H(e^{j\omega})$.

3. (5 marks) Suppose we have the following cascade of all-pole filters:

where

$$H_1(e^{j\omega}) = rac{1}{1 - rac{1}{2}e^{-j\omega}} \quad ext{ and } \quad H_2(e^{j\omega}) = rac{1}{1 - rac{1}{3}e^{-j\omega}}.$$

- (a) Find h[n] such that the input x[n] and output y[n] satisfy the relationship y[n]=h[n]*x[n].
- (b) Find g[n] such that x[n] = g[n] * y[n].

4. (5 marks) Consider the minimum-phase system with transfer function

$$H(z) = \frac{1 - (1/2)z^{-1}}{1 - (1/3)z^{-1}},$$

where the region of convergence is $|z| > \frac{1}{3}$.

- (a) Find a difference equation linking the input x[n] and the output y[n].
- (b) Find the impulse response of the system.
- (c) Find the transfer function of a causal and stable system that is the inverse of H(z), and sketch the poles, zeros, and region of convergence of this inverse system in the z-plane.

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d}X(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

1	
-	All z
$\frac{1}{1-z-1}$	z > 1
$\frac{1}{1-z-1}$	z < 1
z^{-m}	All z except 0 or ∞
$\frac{1}{1-az-1}$	z > a
$\frac{1}{1-az-1}$	z < a
$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\frac{1 - a N z - N}{1 - a z - 1}$	z > 0
$\frac{1-\cos(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}}$	z > 1
$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
	$\begin{array}{c} \frac{1}{1-z-1} \\ z-m \\ z-m \\ \\ \frac{1}{1-az-1} \\ \frac{1}{1-az-1} \\ \frac{az-1}{az-1} \\ \frac{az-1}{(1-az-1)^2} \\ \frac{az-1}{(1-az-1)^2} \\ \frac{1-aN_z-N}{1-az-1} \\ \frac{1-\cos(\omega_0)z-1}{1-2\cos(\omega_0)z-1+z-2} \\ \frac{1-\cos(\omega_0)z-1}{1-\cos(\omega_0)z-1} \end{array}$