EEE4001F: Digital Signal Processing

Class Test 2

23 April 2009

SOLUTIONS

Name:	
Student number:	
Information	
• The test is closed-book.	
• This test has <i>four</i> questions, totalling 20 marks.	

• Answer *all* the questions.

• You have 45 minutes.

1. (5 marks) Consider the discrete-time signal

$$x[n] = \begin{cases} -1 & n = 0 \\ 2 & n = 1 \\ 2 & n = 2 \\ 1 & n = 3 \\ 0 & \text{otherwise.} \end{cases}$$

Calculate the 4-point DFT X[k] of x[n].

Since

$$X[k] = \sum_{n=0}^{3} x[n]e^{-j\frac{2\pi}{4}kn} = \sum_{n=0}^{3} x[n]e^{-j\frac{\pi}{2}kn}$$

we have

$$\begin{split} X[0] &= -1e^0 + 2e^0 + 2e^0 + 1e^0 = 4, \\ X[1] &= -1e^0 + 2e^{-j\pi/2} + 2e^{-j\pi} + 1e^{-j3\pi/2} = -1 - 2j - 2 + j = -3 - j, \\ X[2] &= -1e^0 + 2e^{-j\pi} + 2e^{-j2\pi} + 1e^{-j3\pi} = -1 - 2 + 2 - 1 = -2, \\ X[3] &= -1e^0 + 2e^{-j3\pi/2} + 2e^{-j6\pi/2} + 1e^{-j9\pi/2} = -1 + 2j - 2 - j = -3 + j. \end{split}$$

2. (5 marks) A linear time-invariant filter has the following transfer function:

$$H(z) = 3 + 5z^{-1} - 4z^{-2} + 5z^{-3} - 7z^{-4}.$$

- (a) Find the impulse response of the filter.
- (b) Does the filter have a finite or an infinite impulse response? Why?
- (c) Does the filter have a linear phase response? Why?
- (a) Since $H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$ we can see by equating terms that the impulse response is $h[n] = 3\delta[n] + 5\delta[n-1] 4\delta[n-2] + 5\delta[n-3] 7\delta[n-4]$.
- (b) No poles, so FIR.
- (c) For linear phase we require a symmetric or anti-symmetric impulse response around the midpoint. For a 5-point IR, the symmetry would have to be around n = 2. since $h[0] \neq h[4]$, the filter is not linear phase.

3. (5 marks) A system has the impulse response $h[n] = \alpha \delta[n] + \beta \delta[n-1]$. What conditions are required on α and β for it to have a causal and stable inverse?

The system has the z-transform $H(z) = \alpha + \beta z^{-1}$, with ROC the entire z-plane excluding the origin. The inverse system has z-transform

$$G(z) = \frac{1}{\alpha + \beta z^{-1}}$$

which has a pole at $z = -\beta/\alpha$. For a causal inverse the ROC must be taken outside this pole: $|z| > |-\beta/\alpha|$, or $|z| > |\beta/\alpha|$. This inverse is only stable if the ROC includes the unit circle, in which case $|\beta/\alpha| < 1$.

4. (5 marks) Consider the following sampling system:

Explain, with clear motivation, what is wrong with this configuration. What consequences will this fault have?

The anti-aliasing filter must be placed before the ADC, and must hence be an analog filter. For the given configuration, aliasing will occur at the ADC, and the discrete-time "anti-aliasing" filter will not have the desired effect.

[Any elaboration on the above answer will be fine as a solution.]

Fourier transform properties

Sequences $x[n]$, $y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n}dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_{\rm O}]$	$e^{-j\omega n_0}$	
1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^nu[n] (a <1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1 - ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$r^n\cos(\omega_0 n)u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r