Transform ana|ysi5 of LTI systems 1.1 Ideal frequency-selective filters

Oppenheim and Schafer, Second edition pp. 240-339. Frequency components of the input are suppressed in thatalitpl (e/?)| is

For LTI systems we can write small at those frequencies. Thieal lowpass filteris defined as the LTI
00 system with frequency response
y[nl = x[n)* hin) = " x[k]h[n —k].
ke=—o0 Hyp(e’®) {1 o] =
Alternatively, this relationship can be expressed in thimsform domain as 0 we < |o| < 7.

Y(z) = H(z)X(2), Its magnitude and phase are

whereH (z) is thesystem function or the z-transform of the system impulse _1F ' ' ' .
response. %
Recall that a LTI system is completely characterised bynitsllse response, i
or equivalently, its system function. 0 . . .
- we 0 We T
w
1 Frequency response of LTI systems 7E - - - ]
z
The frequency respongé(e/?) of a system is defined as the gain that the % 0
system applies to the complex exponential ingi4t*. The Fourier transforms v
of the system input and output are therefore related by 7L - - - ]
-7 we 0 We T
Y(e/®) = H(e/®)X(e’?). w
In terms of magnitude and phase, This response, as for all discrete-time signals, is petiwdth period2r. Its

_ _ ' impulse response (feroo < n < o) is
1Y (e7°)| = [H(e’*)[| X ()]

. . . ) B 1 o8 Jon gy — 1 1 jom ¢
<Y(e’®) = <H(e’?) + <X (/). p[n] = e/"dw = — | —e

2 —we 2w | jn — e

. - . . 1 1, ; sin
In this casg H(e/®)| is referred to as theagnitude responseor gain of the = — —(eJM — T/ = (wcn)’

S . 2
system, andq H (e/?) is thephase responser phase shift e S

which forw, = /4 is
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The ideal lowpass filter is noncausal, and its impulse respextends from
—o00 < n < 0o. The system is therefore not computationally realisablso A
the phase response of the ideal lowpass filter is specified retp — this is a
problem in that causal ideal filters have nonzero phase nsgso

Theideal highpass filteris

. 0 <
Hiple?®) = ol = e
1 we < |w| < 7.
Since Hpp(e/®) = 1 — Hip(e’/®), its frequency response is
sin(wen
hnplin] = 81n) — hplin] = 8] — 2e2e)
mn

1.2 Phase distortion and delay

Consider the ideal delay, with impulse response
hig[n] = 8[n — ng]

and frequency response

Hid(é‘jw) = €_jwnd.

The magnitude and phase of this response are
|Hia(e’*)| = 1,
<Hig(e’®) = —wny, lw| < 7.

The phase distortion of the ideal delay is therefore a lifigaction of w. This
is considered to be a rather mild (and therefore acceptédri®)of phase
distortion, since the only effect is to shift the sequencénire. In other words,
a filter with linear phase response can be viewed as a castadem-phase
filter, followed by a time shift or delay.

In designing approximations to ideal filters, we are therefeequently willing
to accept linear phase distortion. The ideal lowpass filith phase distortion
would be defined as

. e~ J@na ol <w
Hoe) = { 0] < o
0

we < |w| <,

with impulse response

sin(we (n — ng)

hip[n] = pp—

A convenient measure of linearity of the phase isghmup delay, which
relates to the effect of the phase on a narrowband signaki@erthe
narrowband inpuk[n] = s[n] coSwen), wheres[n] is the envelope of the
signal. SinceX(e/®) is nonzero only aroun@ = wy, the effect of the phase of
the system can be approximated aroung: wq by

<H(e'?) ~ —¢pg — wny.

Thus the response of the systenx{a] = s[n] coSwon) is approximately
y[n] = s[n — ng] coSwon — ¢po — wong). The time delay of the envelopn]
of the narrowband signal[n] with Fourier transform centred aj, is therefore
given by the negative of the slope of the phase@tThe group delay of a



system is therefore defined as

{ardH(e’®)]} .

The deviation of the group delay away from a constant indicétie degree of
nonlinearity of the phase. Note that the phase here mustrimdared as a
continuous function ob.

: d
7(@) = grH(e™)] = —

w

2 System response for LCCD systems

Ideal filters cannot be implemented with finite computatidherefore we
need approximations to ideal filters. Systems described@@D equations

N M
D aryln—kl =Y bx[n —k]
k=0 k=0

are useful for providing one class of approximation.

The properties of this class of system are best developédutin-transform
domain. The z-transform of the equation is

N M
Z apz"k Y(2) = Z bkz_kX(z),

k=0 k=0

or equivalently

N M
(Z akz_k) Y(z) = <Z bkz_k) X(2).
k=0 k=0

The system function for a system that satisfies a differegoateon of the
required form is therefore

_ Y _ YalebkzF _ (b_o) [Tt (1 —cez™)
X(z) YN apzk ao ) TTN_,(1 —dgz=1)

H(z)

Each facto(l — cxz~') in the numerator contributes a zerazat ¢ and a
pole atz = 0. Each facto1 — d;z~') contributes a zero at= 0 and a pole
atz = d.

The difference equation and the algebraic expression ésystem function
are equivalent, as demonstrated by the next example.

Example: second-order system
Given the system function

(1+:z71H2
(1—1z7H1 + 3271’

we can find the corresponding difference equation by notiag t

H(z) =

142714272 Y(2)

H(z) = = .
@ 1+4z71=32272 X(2)

Therefore
1 3
(a+ Zz—l — §Z_2)Y(Z) = (1 +2:"" 4+ 27HX(2),
and the difference equation is

ylal 4 3y = 1] = 2 yln =2 = xln] + 2l — 1]+ xln 2]

2.1 Stability and causality

A difference equation does not uniquely specify the impodsponse of a LTI
system. For a given system function (expressed as a ratiolgfigmials),
each possible choice of ROC will lead to a different impukssponse.
However, they will all correspond to the same differenceatioum.

If a system is causal, it follows that the impulse responseright-sided
sequence, and the region of convergenc# @f) must be outside of the
outermost pole.



Alternatively, if we require that the system be stable, termust have which implies that

1
o0 H = .
> |hln]| < oo. @ H;(z)

n=—cc The time-domain equivalent is

For|z| = 1 this is identical to the condition
d g[n] = hln] % hifn] = 8fn].

o0
Z |h[n]z™"| < oo, The question of which ROC to associate with(z) is answered by the

- ) _n=._°° ) ) convolution theorem — for the previous equation to hold #gians of
so the condition for stability is equivalent to the conditibat the ROC of convergence off(z) and H; (z) must overlap.

H (z) include the unit circle. _ _
Example: inverse system for first-order system

Example: determining the ROC Let H(z) be

The frequency response of the LTI system with differenceaiqn

1-05z71
H(z) = :

ylnl = 2yln — 1]+ yln —2] = xln) 1= 0.0

2 with ROC|z| > 0.9. ThenH;(z) is

is —1

1-0.9z
H(z) = ! = 1 . Hi(z) = 1—0.5z-1"
1— %z‘l +z72  (1- %2_1)(1 —2z71) — Yoz
There are three choices for the ROC: Since there is only one pole, there are only two possible RO@s choice of

ROC for H; (z) that overlaps withz| > 0.9is |z| > 0.5. Therefore, the

e Causal: ROC outside of outermost pole| > 2 (but then not stable). impulse response of the inverse system is

e Stable: ROC such that < |z| < 2 (but then not causal). .
hi[n] = (0.5)"u[n] — 0.9(0.5)" ‘uln — 1].
o If |z] < %then the system is neither causal nor stable.

. In this case the inverse is both causal and stable.
For a causal and stable system the ROC must be outside the outermost pole

and include the unit circle. This is only possible if all the poles are inside the A LTI system is stable and causal with a stable and causaiseveand only if
unit circle. both the poles and zeros &f(z) are inside the unit circle — such systems are
calledminimum phase systems.
2.2 Inverse systems The frequency response of the inverse system, if it exists, i
. . . H(ej“’) — 1
The systen¥, (z) is the inverse system tH (z) if T Hi(elo)
G(z) = H(z)Hi(z) = 1, Not all systems have an inverse. For example, there is noevegcbver the



frequency components above the cutoff frequency that wetrzero by the
action of the lowpass filter.

2.3 Impulse response for rational system functions

If a system has a rational transfer function, with at leastjpole that is not
cancelled by a zero, then there will always be a term cormedipg to an
infinite length sequence in the impulse response. Suchragsdee called
infinite impulse response (lIR)systems.

On the other hand, if a system has no poles excepta0 (thatis,N = 0in
the canonical LCCDE expression), then

M
H(z) =) bz*.
k=0

In this case the system is determined to within a constantiplial by its
zeros, so the impulse response has a finite length:

b, 0<n<M

M
hn] = bidln — k] =
,;O 0 otherwise

In this case the impulse response is finite in length, andytbtes is called a
finite impulse response (FIR)system.

Example: a first-order IR system
Given a causal system satisfying the difference equation

y[nl —ayln —1] = x[n],

the system function is

1
HE) = 1——=——  [>lal

The condition for stability i3a| < 1. The inverse z-transform is

hn] = auln)].

Example: a simple FIR system
Consider the truncated impulse response

a” 0<n<M
hin] = ,
otherwise

The system function is

M M+1,-M—-1
1—a z
H(z) = az ™" =
@)= —
n=0
The zeros of the numerator are at
2k = aelFRIMED e — 0 1,... M.

With a assumed real and positive, the pole at a is cancelled by a zero. The

pole-zero plot for the case @ff = 7 is therefore given by

z—plane Im
- - {)— = ~
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The difference equation satisfied by the input and outpth@LiT| system is
the convolution

M
y[n] = Zakx[n — k.
k=0

10



The input and output also satisfy the difference equation

ylnl—ay[ln —1] = x[n] —a™x[n — M —1].

3 Frequency response for rational system
functions

If a stable LTI system has a rational system function, thefréquency
response has the form

M —jok

; —obre™®
H(e-’“’) = —ZI;V_O k - .

=0 ake—]a)k
We want to know the magnitude and phase associated withehadncy
response. To this end, it is useful to exprés&’/) in terms of the poles and
zeros ofH(z):

jo bo Hlj\ll:l(l_cke_jw)
HE'?) = — N —.
a0/ [[=1(1 —dre=7®)

It follows that
bo
ao

[Temy 11 — cxe ™|
TTA_, 11 — dre=7]
Thereforel H(e/®)| is the product of the magnitudes of all thero factorsof

H(z) evaluated on the unit circléljvided by the product of the magnitudes of
all thepole factorsevaluated on the unit circle.

|H(e*)| =

Thegain in dB of H(e/®), also called théog magnitude, is given by

Gain in dB= 20log,, | H(e’®)|,

11

which for a rational system function takes the form

M
. b .
2010g,o | H(e/®)| = 20l0g, | —| + Y _ 20l0gy, |1 — cxe ™7
dol 5
N .
— > 20logyq |1 — die ™.
k=1

Also
Attenuation in dB= —Gain in dB

Thus a60dB attenuation at frequeney corresponds toH (e/?)| = 0.001.
Also,

20logy |Y(e?®)| = 2010g;o | H(e’®)| + 2010g;4 | X (/)]

The phase response for a rational system function is

M N
. b N i
<H(’*) =« [£i| + kg_l <[l —cre™ ] — ké_l <[1 —dre™?].

The zero factors contribute with a plus sign and the polefaatith a minus.

In the above equation, the phase of each term is ambiguaeg, any integer
multiple of 2z can be added at each valuempfvithout changing the value of
the complex number. When calculating the phase with a coenphie angle
returned will generally be therincipal value ARGH (e/)], which lies in the
range—x to 7. This phase will generally be a discontinuous function,
containing jumps ofx radians whenever the phase wraps. Appropriate
multiples of2z can be added or subtracted, if required, to yield the coatisu
phase function aidf (e/®)].

12



ARG[H (e/®)] The following plot shows the frequency responserfe 0.9 and three
different values of:
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3.1 Frequency response of a single pole or zero
Consider a single zero factor of the form
o Note that
(1—relfe=7?) o . .
e The gain dips abv = 6. As 6 changes, the frequency at which the dip
in the frequency response. The magnitude squared of thiwr fisc occurs changes.

- reﬂ’e‘j“’|2 — (- refge_j“’)(l _ re‘f"ej“’) e The gain .is max.im.ised fap — 0 = &, and forr = 0.9 the magnitude of
5 the resulting gain is
=1+r°—2rcoqw — 6),
10log,o(1 + 72 4 2r) = 20log, (1 + r) = 5.57dB.

so the log magnitude in dB is
e The gain is minimised fow = 6, and forr = 0.9 the resulting gain is

20l0g,, |1 — re’®e7?| = 10log,,[1 + r*> — 2r cogw — 0)].
9o | 9ol & ) 10log,o(1 + 2 —2r) = 20log,, |1 — r| = —20dB.

The principle value of the phase for the factor is
P P P e The phaseis zero at = 6.

ARG[1 — re/?e7?] = arctan[%} ) Note that if the factof1 — re/?e/®) occurs in the denominator, thereby
—rcosw—9) representing a pole factor, then the entire analysis hoitiistiie exception that
These functions are periodic inwith period2x. the sign of the log magnitude and the phase changes.
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The frequency response can be sketched from the pole-z®rogihg a simple vector, and a vector from a pole to the unit circle is calleplade vector.
geometric construction. Note firstly that the frequencyogse corresponds to Consider now the pole zero system depicted below:

an evaluation of{ (z) on the unit circle. Secondly, the complex value of each Im

pole and zero can be represented by a vector in the z-plametfr® pole or
zero to a point on the unit circle.

Take for example the case of a single zero factor

. —relf
Hiz) =(1—relf27Y = tTre r<l,
z

which corresponds to a pole at= 0 and a zero at = re/?.

Im
b3
z—plane
Vo SVEN . . .
4 The frequency response for the single zero at differentegatdr andé = 7 is
\\ 10 . . :
0 \o Re R :
m 0 - :
z ' :
c AN — =i
£ 10} ~ r=0.7 |
8 N ~ 1=0.9
-20} -/ r=1 i
e 3
0 > /1 5 2w
. w
If the vectorsvy, v,, andvs; = v; — v, represent respectively the complex oz
. . . . %) 2 T T T
numbers/®, re/%, ande/® — re/?, then g TS
jo jé g L~ ==
: 9 _i el? —re V3 o 0O
|H(™)| = |1 —re/fe™ /| = |—————| = sl = |vs|. b ~— g
el® |V1| g ~L = - — -
o — —
i _ I 1 !
The phase is 20 z w z 2
w

<H (') = <(1 —relfe™7®) = <(e/® — re’?) — <(e/®)
= <(V3) — (V1) = ¢3 — 1 = ¢3 — w. Note that the log magnitude dips more sharply approaches$ (and at
w = w tends to—oo asr tends towardg). The phase function has positive

A vector such ag3 from a zero to the unit circle is referred to azexo slope arouna = 6. This slope increases aspproaches, and becomes
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infinite for » = 1. In this case the phase function is discontinuous, with gjum

of = radians atv = 6.

If r increases still further, to lie outside of the unit circle,

then the frequency response becomes

Re
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-7 L !
i1 3
0 2 T 7” 27‘[
w
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3.2 Frequency response with multiple poles and zeros

In general, the z-transform of a LTI system can be factorésed

H(z) = (b_o) [lemi (1 —cez™) _ (b_o) nv-n Tk (2 — i)
ao ) [TA_,(1 —dgz=1)  \do T, (z — dy)
Depending on whethe¥ is greater than or less thad, the factorz¥ —M

represents eithe¥ — M zeros at the origin, oM — N poles at the origin. In
either case, the z-transform can be written in the form

Mo .
H(z) = g Hi=oe =20
Hi:oo(z - pk)
wherezy, ..., zpy, are the zeros, ang, ..., pn, the poles ofH (z). This

representation could also be obtained by merely factaisi(z) in terms ofz

rather thare ™!,
The frequency response of this system is
M .
H(eja)) - K l_[;.vzoo el? — z;) ‘
Hi:oo(ejw - pk)

The magnitude is therefore

M .
[1;=o 1’ — zk|

|H(e/®)] = |K| im0~k
1_[1'=00 le/® — prl

and the phase is

My No
TH () =) (e’ —z) = ) <1(e” — pi).
i=0 i=0

In the z-plane(e/® — z;) is simply the vector from the zerg, to the point on
the unit circle. The ternfe/® — z;| is the length of this vector, and
<(e/? — z;) is the angle that it makes with the positive real axis. Sirtyilahe

18



term(e/® — py) corresponds to the vector from the palgto the point on the
unit circle.

It follows then that the the magnitude response is the prioofitbe lengths of
the zero vectors, divided by the product of the lengths ofiiile vectors. The
phase response is the sum of the angles of the zero vectonss thie sum of
the angles of the pole vectors. Thus, for the two pole, two ggstem

Im

z—plane

U,

the frequency response is

U,U,

H('®)| = |K
|H(e!*)| = | |V1V2

<H(e/®) = 01 + 602 — (¢1 + ¢2).

Here K is a constant factor which cannot be determined from the pere
diagram alone, but only serves to scale the magnitude.

4 Realisation structures for digital filters

The difference equation, the impulse response, and themayfsinction are all
equivalent characterisations of the input-output retafar a LTI discrete-time
system. For implementation purposes, systems describe@GPES can be

19

implemented by structures consisting of an interconnecaifdhe basic
operations of addition, multiplication by a constant, aethgl. The desired
form for the interconnections depends on the technologetoded.

Discrete-time filters are often represented in the form o€blor signal flow
diagrams, which are convenient for representing the diffee equations or
transfer functions.

For example, the system with the difference equation
yin] =x[n =1l =biy[n — 1]+ boyln — 2] + b3 y[n — 3]

can be represented in a block diagram form as

X[n] X[n-1]

_Z—l_>® |

71

yIn]

_bl
——— y[n-1]
Z_l

by
—=—- y[n-2]

-1

VA
b
L < T3]

The symbok~! represents a delay of one unit of time, and the arrows
represent multipliers (with the constant multiplicati@etiors next to them).
The equivalent signal flow diagram is
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y

x[n] . yIn]
| Bk

<t yin-1]

y:!

by
L—-—9 y[n-2]
| Bt
bs :
- y[n-3]

The relationship between the diagrams and the differengatin is clear.

Many alternative filter structures can be developed, angdiféeer mainly with
respect to their numerical stability and the effects of disation on their
performance. A discussion of these effects can be found imyrB&P texts.
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