Transform analysis of LTI systems
Oppenheim and Schafer, Second edition pp. 240-339.

For LTI systems we can write

o

y[n) = x[n] «hln] = > x[klhn —k].

k=—o00

Alternatively, this relationship can be expressed in thieapsform domain as
Y(z) = H(2)X(2),

whereH(z) is thesystem function or the z-transform of the system impulse
response.

Recall that a LTI system is completely characterised bynifsulse response,
or equivalently, its system function.

1 Frequency response of LTI systems

The frequency respondé(e/®) of a system is defined as the gain that the
system applies to the complex exponential ingitt*. The Fourier transforms
of the system input and output are therefore related by

Y(e’?) = H(e’?)X(e’?).
In terms of magnitude and phase,
Y (/)| = [H(e?®)||X(e”?)]
Y (e/?) = <H(e’?) + <X (e’?).

In this casd H (e/?)| is referred to as theagnitude responseor gain of the
system, andtH (e/®) is thephase responser phase shift



1.1 Ideal frequency-selective filters

Frequency components of the input are suppressed in thatofitpl (e/*)| is
small at those frequencies. Thikeal lowpass filteris defined as the LTI
system with frequency response

o] < o

Hlp(ejw)
we < || < .

Its magnitude and phase are
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This response, as for all discrete-time signals, is peciadgth period2sx. Its
Impulse response (feroo < n < o) is

1 @e 1 |
hip[n] = e!"dw = — [—e”””]

E —we 2w | jn o,
_ L1 oo _ gmiweny  SIN(@en)
n2j an

which forw, = /4 is
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The ideal lowpass filter is noncausal, and its impulse respertends from
—00 < n < o0. The system is therefore not computationally realisablso A
the phase response of the ideal lowpass filter is specified refm — this is a
problem in that causal ideal filters have nonzero phase nsgso

Theideal highpass filteris

o] < wc

1 we < |o| < .

: 0
th(ejw) = {

Since Hnp(e/?) = 1 — Hyp(e’?), its frequency response is

hnpln] = 8] — hpln] = 8] — Z22e)

wn

1.2 Phase distortion and delay

Consider the ideal delay, with impulse response
hig[n] = 8[n — ng]

and frequency response

Hid(ejw) = €_jwnd.



The magnitude and phase of this response are
|Hig(e’?)| = 1,
<Hig(e’?) = —wny, lw| < .
The phase distortion of the ideal delay is therefore a lifigaction ofw. This
Is considered to be a rather mild (and therefore acceptédi®)of phase
distortion, since the only effect is to shift the sequencinie. In other words,

a filter with linear phase response can be viewed as a castadem-phase
filter, followed by a time shift or delay.

In designing approximations to ideal filters, we are thenefoequently willing
to accept linear phase distortion. The ideal lowpass filidr phase distortion
would be defined as

: e~ Jona ol <w
Hlp(e]a)) — | |_ C
0 we < || < m,

with impulse response
Sin(w.(n —ngyg)

ol = = na)

A convenient measure of linearity of the phase isgh@up delay, which

relates to the effect of the phase on a narrowband signaki@enmthe
narrowband inpuk[n] = s[n] coqwen), wheres[n] is the envelope of the
signal. SinceX(e/®) is nonzero only aroun@ = wy, the effect of the phase of
the system can be approximated aroung: wg by

<TH(e’?) ~ —¢pg — wny.

Thus the response of the systenxfa]| = s[n] coqwon) is approximately
y[n] = s[n — ng] coqwon — ¢o — wony). The time delay of the envelopé:]
of the narrowband signal[r] with Fourier transform centred aj is therefore
given by the negative of the slope of the phaseatThe group delay of a



system is therefore defined as

. d .
(w) = grd H(e’?)] = - lardH(e’?)]} .

The deviation of the group delay away from a constant inds#te degree of
nonlinearity of the phase. Note that the phase here mustrmdsred as a
continuous function odb.

2 System response for LCCD systems

Ideal filters cannot be implemented with finite computatidherefore we
need approximations to ideal filters. Systems described®®[D equations

N M
Zaky[n — k] = Z bipx[n — k]
k=0 k=0

are useful for providing one class of approximation.

The properties of this class of system are best developdugin-transform
domain. The z-transform of the equation is

N M
Z akz_kY(z) = Z bkz_kX(z),

k=0 k=0

or equivalently

N M
(Z akz_k) Y(z) = (Z bkz_k) X(z).
k=0 k=0

The system function for a system that satisfies a differegoateon of the
required form is therefore

_ Y@ _ Yilebhkz* _ (b_) [T, (0 =z
X(z) Z,i\;oakz—k ao ]_[,]Ll(l—dkz—l).

H(z)



Each factor(1 — cxz~ 1) in the numerator contributes a zerazat ¢, and a
pole atz = 0. Each factor(1 — diz~!) contributes a zero at= 0 and a pole
atz = d.

The difference equation and the algebraic expression éosylktem function
are equivalent, as demonstrated by the next example.

Example: second-order system
Given the system function

(1+2z71)2
(1-— %Z_l)(l + %Z_l)’

we can find the corresponding difference equation by nohag t

H(z) =

1 +2z7 4272 _Y(2

14 2z71— %Z_z - X(2)

H(z) =

Therefore
1 3
(1+ ZZ_I — gZ_z)Y(Z) =142z +27HX(2),
and the difference equation is

ylnl + gyln =11 = Syln —2) = xla] + 2xfn — 1] 4 xln ~ 2]

2.1 Stability and causality

A difference equation does not uniquely specify the impusponse of a LTl
system. For a given system function (expressed as a ratiolyhg@mials),
each possible choice of ROC will lead to a different impuksgponse.
However, they will all correspond to the same differenceagigu.

If a system is causal, it follows that the impulse responseright-sided
sequence, and the region of convergenc# ¢f) must be outside of the
outermost pole.



Alternatively, if we require that the system be stable, thermust have

> |h[n]| < oo.

n=—00
For|z| = 1 this is identical to the condition

o .e]

> Jh[n)z™"| < oo,

n=—o0
so the condition for stability is equivalent to the conditiat the ROC of
H (z) include the unit circle.

Example: determining the ROC
The frequency response of the LTI system with differenceagqo

vl = 2yl =11+ yln 2] = xla

1 1
H(z) = 5,-1 2 = 1,—1 -1y
1—3z7t+z (1—-3z7H(A-2z71)

There are three choices for the ROC:

e Causal: ROC outside of outermost pole| > 2 (but then not stable).
e Stable: ROC such thaf < |z| < 2 (but then not causal).
o If |z] < %then the system is neither causal nor stable.

For a causal and stable system the ROC must be outside the outermost pole
and include the unit circle. This is only possible if all the poles are inside the
unit circle.

2.2 Inverse systems

The systen¥;(z) is the inverse system td (z) if
G(z) = H(z)Hi(z) = 1,



which implies that
1

H(z) = TAES

The time-domain equivalent is

gln] = hin] * hi[n] = 8[n].

The question of which ROC to associate wiiti(z) is answered by the
convolution theorem — for the previous equation to hold gggans of
convergence of{ (z) and H; (z) must overlap.

Example: inverse system for first-order system

Let H(z) be
1 —0.5z"1
H = —
(@) =100
with ROC|z| > 0.9. ThenH;(z) is
1-0.9z"1
H; =
i(2) = T o5

Since there is only one pole, there are only two possible RO@s choice of
ROC for H; (z) that overlaps withz| > 0.9is |z| > 0.5. Therefore, the
iImpulse response of the inverse system is

hi[n] = (0.5)"u[n] —0.9(0.5)" lu[n —1].

In this case the inverse is both causal and stable.

A LTI system is stable and causal with a stable and causaisavéand only if
both the poles and zeros &f(z) are inside the unit circle — such systems are
calledminimum phase systems.

The frequency response of the inverse system, if it exists, i

1

H(e') = H;(el®)’

Not all systems have an inverse. For example, there is noavegcover the



frequency components above the cutoff frequency that wetrezero by the
action of the lowpass filter.

2.3 Impulse response for rational system functions

If a system has a rational transfer function, with at least jpole that is not
cancelled by a zero, then there will always be a term corredipg to an
infinite length sequence in the impulse response. Suchmgsiee called
infinite impulse response (IIR)systems.

On the other hand, if a system has no poles excepta0 (thatis,N = 0in
the canonical LCCDE expression), then

In this case the system is determined to within a constantiphial by its
zeros, so the impulse response has a finite length:

by, 0O<n<M

M
hin] = bié[n — k] =
kzz;) 0 otherwise

In this case the impulse response is finite in length, andytbies is called a
finite impulse response (FIR)system.

Example: a first-order IIR system

Given a causal system satisfying the difference equation
y[n] —ayln —1] = x[n],

the system function is

1 z
HE) = —— = |z|>lal




The condition for stability isa| < 1. The inverse z-transform is

hln] = a" uln].

Example: a simple FIR system
Consider the truncated impulse response

a” O0<n<M
hin] =
0 otherwise

The system function is

M M+1_—-M-—1
l1—a z
H(z) = az " =
()=, —
n=0
The zeros of the numerator are at
Zk=aej2”k/(M+1), k=0,1,..., M.

With @ assumed real and positive, the pole at «a is cancelled by a zero. The
pole-zero plot for the case @f = 7 is therefore given by
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The difference equation satisfied by the input and outpth@Lil | system is
the convolution

M
y[n] = Zakx[n — k.
k=0

10



The input and output also satisfy the difference equation
y[n] —ayln —1] = x[n] —a™xn — M —1].
3 Frequency response for rational system
functions

If a stable LTI system has a rational system function, thefréquency
response has the form

@ ZIJCM=O bke_jwk
H(e’?) = =% —.
D k=0 ke 1ok
We want to know the magnitude and phase associated withehadncy
response. To this end, it is useful to exprés@ /) in terms of the poles and

zeros ofH(z):

H(e®) = (b_o) [y (1~ cxe ™)
ao ]_[,iv:l(l — dre /@)

It follows that
[Tes, 11 — cxe™7®|

[T, |1 — dye=i@|

bo
ao

[H(e?®)| =

Therefore| H(e’/?)| is the product of the magnitudes of all thero factors of
H(z) evaluated on the unit circléjvided by the product of the magnitudes of
all thepole factorsevaluated on the unit circle.

Thegain in dB of H(e/®), also called théog magnitude, is given by

Gain in dB= 201log,, | H(¢’?)|,

11



which for a rational system function takes the form

bo

ao

2010g,, |H(e’®)| = 20l0g,,

M
k=1

N .
k=1

Also
Attenuation in dB= —Gain in dB

Thus a60dB attenuation at frequeney corresponds toH (e/?)| = 0.001.
Also,

20log; |Y(e/®)| = 20109, | H(e’®)| + 20109, | X (e’*)|.

The phase response for a rational system function is
b M N
<H@?) = <| 2| + <[l — cpe7/?] — <[l — dre7°].
@)= <o+ Bt e Xl - e

The zero factors contribute with a plus sign and the polefaatith a minus.

In the above equation, the phase of each term is ambigumes, any integer
multiple of 2 can be added at each valueswfvithout changing the value of
the complex number. When calculating the phase with a coenpie angle
returned will generally be therincipal value ARGH (e/®)], which lies in the
range—r to 7. This phase will generally be a discontinuous function,
containing jumps o2x radians whenever the phase wraps. Appropriate
multiples of2z can be added or subtracted, if required, to yield the coatisu
phase function afdf (e/*)].

12



ARG[H (/)]

arg H (e/)]

T
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—7
-2
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3.1 Frequency response of a single pole or zero

Consider a single zero factor of the form
(1 —re/fe /)
in the frequency response. The magnitude squared of thisr fisc
11 —relPe 7212 = (1 = re/%¢7?)(1 — re 7%e/®)
=14 r?—2rcoqw —6),
so the log magnitude in dB is
20l0g,o |1 — re’?e™/?| = 10log,y[1 4 r? — 2r cogw — 6)].

The principle value of the phase for the factor is

. . ' -0
ARG[1 — re/%e7®] = arctan[1 ijlzi)a;(a) _)9)] :

These functions are periodic inwith period2.

13



The following plot shows the frequency responserfet 0.9 and three
different values of):

Gain (dB)

Phase (radians)

Note that

e The gain dips atv = 6. As 6 changes, the frequency at which the dip
occurs changes.

e The gain is maximised fap — 6 = &, and forr = 0.9 the magnitude of
the resulting gain is

1010g,4(1 4+ r? + 2r) = 20log,,(1 + r) = 5.57dB.
e The gain is minimised fo® = 6, and forr = 0.9 the resulting gain is
10l0g,o(1 + r? —2r) = 20log,, |1 — r| = —20dB.

e The phase is zero at = 6.

Note that if the factof1 — re/?¢/®) occurs in the denominator, thereby
representing a pole factor, then the entire analysis hoittstiie exception that
the sign of the log magnitude and the phase changes.

14



The frequency response can be sketched from the pole-z#ragihg a simple
geometric construction. Note firstly that the frequencyoese corresponds to
an evaluation of{ (z) on the unit circle. Secondly, the complex value of each
pole and zero can be represented by a vector in the z-plametfi® pole or
zero to a point on the unit circle.

Take for example the case of a single zero factor

. —rel?
H(z) =(1—-refz71) = T e r<l,
z

which corresponds to a poleat= 0 and a zero at = re’?.
Im
v

b3
z—plane

If the vectorsvy, v,, andvs = v; — Vv, represent respectively the complex
numbers’/?, re/? ande/® — re’?, then

el® _

|H(e7?)| = |1 —relfe™7®| =

The phase is
<H (') = <(1 —re/fe™7?) = «(e’® — re’?) — <(e/?)
= <Vv3) —<<(V1) = ¢3 — 1 = ¢3 — .

A vector such ag3 from a zero to the unit circle is referred to agexo



vector, and a vector from a pole to the unit circle is calleplcde vector.

Consider now the pole zero system depicted below:

Re

The frequency response for the single zero at differentegatifr andf = =z is

10 T T T

o

-10

Gain (dB)

Phase (radians)

Note that the log magnitude dips more sharply approache$ (and at
w = 7 tends to—oo asr tends towards). The phase function has positive
slope around = 6. This slope increases asapproaches$, and becomes
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infinite for r = 1. In this case the phase function is discontinuous, with gjum
of = radians atv = 6.

If r increases still further, to lie outside of the unit circle,

Re

then the frequency response becomes
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3.2 Frequency response with multiple poles and zeros

In general, the z-transform of a LTI system can be factoréased

H(z) = (@) T, (1 —cxz™) (b_o) _N-M T, (z — cx)

ao ao ]_[,]Ll(z — dk).

[T, (0 —dz=1)

Depending on whethe¥ is greater than or less thad , the factorzy =¥
represents eithe¥ — M zeros at the origin, oM — N poles at the origin. In
either case, the z-transform can be written in the form

My .
H(z) = g HizoC =20
Hi=00(z - pk)
wherezy, ..., zpy, are the zeros, ang., ..., pn, the poles off{(z). This

representation could also be obtained by merely factayigi(z) in terms ofz
rather tharz !,

The frequency response of this system is

M .
Hi=00 el? —zy)

N ; ’
Hizo()(ejw — Pk)

H('?) =K

The magnitude is therefore

M .

|H(e/?)| = |K| =5=2— :
Hi:o() le/® — pi|

and the phase is
My No -
<H(e’?) = Z <(e!?® — zx) — Z <(e’® — pp).
i=0 i=0

In the z-plane(e/® — z;) is simply the vector from the zerq to the point on
the unit circle. The terne/® — zi| is the length of this vector, and
<(e’® — z;) is the angle that it makes with the positive real axis. Sirlyijahe

18



term(e/® — py) corresponds to the vector from the p@lg to the point on the
unit circle.

It follows then that the the magnitude response is the priogfube lengths of
the zero vectors, divided by the product of the lengths opible vectors. The
phase response is the sum of the angles of the zero vectonss thie sum of
the angles of the pole vectors. Thus, for the two pole, two zgstem

Im

z-plane

Z

the frequency response is

U,U,

[H(e’)| = |K]|

| 0%
<H('®) = 0; + 02 — (¢1 + ¢2).

Here K is a constant factor which cannot be determined from the e
diagram alone, but only serves to scale the magnitude.

4 Realisation structures for digital filters

The difference equation, the impulse response, and therayfsinction are all
equivalent characterisations of the input-output retatar a LTI discrete-time
system. For implementation purposes, systems describe@6YESs can be
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implemented by structures consisting of an interconnaaifdhe basic
operations of addition, multiplication by a constant, aethgl. The desired
form for the interconnections depends on the technologetoded.

Discrete-time filters are often represented in the form o€klor signal flow
diagrams, which are convenient for representing the difee equations or
transfer functions.

For example, the system with the difference equation
ylnl = x[n =11 =biy[n = 1] + bay[n — 2] + bz y[n — 3]

can be represented in a block diagram form as

X[n] X[n-1]
— Z—l + -
~© y[n]
Z—l
—b
< yin-1]
Z—l
b
—=—— y[n-2]
Z—l
b3
L -] y[n-3]

The symbok~! represents a delay of one unit of time, and the arrows
represent multipliers (with the constant multiplicati@ctors next to them).
The equivalent signal flow diagram is

20



— P .
X[n] l . vin]
Z

—by
— y[n-1]

b =
<4 yin-2]
o1
b
|3 y[n-3]

The relationship between the diagrams and the differengatemn is clear.

Many alternative filter structures can be developed, angldifeer mainly with
respect to their numerical stability and the effects of disation on their
performance. A discussion of these effects can be found myrB&P texts.
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