Sampling of continuous-time signals
See Oppenheim and Schafer, Second Edition pages 140-Z3gstdEdition
pages 80-148.

1 Periodic sampling
Discrete-time signat|[n] often arises from periodic sampling of
continuous-time signaf. (z):

x[n] = x.(nT), —00 < n < .

This system is called an ideal continuous-to-discrete{@YD) converter or
sampler,

—> C/D >

X (1) x[n] = xc(nT)

— —»

and is described by the following:
e Sampling periodT seconds.

e Sampling frequencyy; = 1/T samples per second, ; = 27/ T
radians per second.

In practice, sampling is usually approximately implemenising
analog-to-digital (A/D) converter.

The sampling process is not generally invertible: one chalways
reconstruci. () unambiguously fronx[r]. However, ambiguity can be
removed byrestricting input signalsto sampler.



2 Frequency-domain representation of sampling

What is the frequency-domain relation between input anguwiwf C/D
converter?

Consider converting.(¢) to x4(¢), by modulating it with the periodic impulse
train

s(t)y=Y_ 8(t—nT),

n=-—00
which has frequency representation

oo

S(iQ) = 27” Y HQ-kQ):

k=—o0
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Through the sifting property of the impulse function,

x5 (1) = xe(1)s(1) = xe(r) ) 8t —nT)

= Y x(nT)8(t —nT).
n=—00
The Fourier transfornX(j 2) of xs(z) = x.(¢)s(¢) is the continuous-time
convolution of Fourier transform¥.(j €2) andS(j ), so

o .e]

X9 = 5= Xe(j ) * SGD = 7 Y Xel(i(@—kQy)).

k=—o0



Therefore, the Fourier transform of (z) consists of copies oX.(j 2), shifted
by integer multiples of sampling frequenfy, and then superimposed:

Xc(j2)
Q
0 Qn
S(j<2)
. Q
2Q, -9, 0 Q, 20,
/TX\SU Q)
09, -Q, S

If x.(¢) isbandlimited, with highest nonzero frequency @ty, then the
replicas do not overlap when

QS > ZQN.

Then we can recovex, (¢) from x,(¢) using an ideal lowpass filteDtherwise,
X.(j2) cannot be recovered using lowpass filteringahasing results:

Xs(J€2)

—2Q; —Qy O Qg 285

The frequency? y is referred to as thBlyquist frequency, and the frequency



2Q y that must be exceeded in the sampling isNlyguist rate.

The objective now is to express the Fourier transfafta’?) of x[n] in terms
of X.(j2) and X (j 2). Taking the Fourier transform of the relationship

Xs(t) = Y xe(nT)8(t —nT)
yields the following:
Xs(jQ) = ) xe(nT)e /2.
Now, sincex[n] = x.(nT) and
Xy = Y x[ulerom,
it follows that
Xs(jR) = X('*)] y_qr = X(%T).
Consequently,
. ] &
QT _ ,
X(e®h) = 7];_ Xe(j(Q = k),
and
: 1 = w 2wk
X(e’?) = = X |jil=-==1).
=7 2 (0 (5-F))

ThusX(e/®) is just a frequency-scaled version®f(j ), with the scaling
specified byw = QT. Alternatively, the effect of sampling may be thought of
as anormalisation of the frequency axis, so that the frequenzy= Q2 of

Xs(j ) is normalised tay = 2x for X (/).



3 Reconstruction of bandlimited signal from
samples

If samples of a bandlimited continuous-time signal are ikequently
enough, then they are sufficient to represent the signatigxabe
continuous-time signal can then be recovered from the ssnphis task is
ideally performed by a discrete-to-continuous-time (DéGhverter. The form
and behaviour of such a converter is discussed in this sectio

Given sequence of samplep:], we can form impulse train

oo

Xs(1) = Y x[n]s(t —nT).

n=—00
Thenth sample corresponds to the impulse at time nT'.

If appropriate sampling conditions are met, namely theaignbandlimited
and the Fourier transform replicas do not overlap, thén can be
reconstructed fromy,(¢) by ideal continuous-time lowpass filtering:

o

xr@) = Y x[nlhy(t —nT).

n=—oo

Hereh,(t) is impulse response of an ideal LPF with cutoff frequenc§2 at

Q
2Q,

A convenient choice for the cutoff frequency$is = Q2;/2 = /T,



corresponding to the ideal reconstruction filter

. Q| <=/T
H,(jQ) =
0 Q| > /T

and reconstructed signal
X, (jQ) = Hr(jQ)X(’%T)
TX(e/ST) Q| <n/T

0 Q| > 7/T.

In the time domain the ideal reconstruction filter has impuésponse

_sin(zt/T)
so the reconstructed signal is
- sinfz(t —nT)/T]
w0 = 2 Wy

From the previous frequency-domain argument|[if] = x.(nT) with
X:(jR) =0for | > x/T, thenx,(t) = x.(t). Note that the filteh, (¢) is
not realisable since it has infinite duration.

An ideal discrete-to-continuous (D/C) reconstructiontsystherefore has the
form
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4 Discrete-time processing of continuous-time
signals

Discrete-time systems are often used to process contirimogssignals. This
can be accomplished by a system of the form:

' Discrete—time '
system

Hert(j2) = He(j€2)

For now it is assumed that the C/D and D/C converters havesatine sampling
rate.

The C/D converter produces the discrete-time signal

x[n] = xc(nT),



with Fourier transform

ven=g 2 % (0 (7))

k=—o00

The D/C converter creates a continuous-time output of tha fo

> sinfz(t —nT)/T]
yr(®)= Y yln] =TT

n=—oo

The continuous-time Fourier transform pf(z), namelyY, (j 2), and the
discrete-time Fourier transform ofn], namelyY (e/<), are related by

Y,(jQ) = H (jQ)Y (/%)

TY(e/92T) Q| <n/T

0 otherwise

If the discrete-time system is LTI, then
Y(e/?) = H(e'*)X(e7?),
whereH (e/®) is the frequency response of the system. Therefore
Y,(jQ) = H:(jQHE )X (#T)
. - 2k
_ . QT .
= H,(jQ)H (e’ )Tkz X, (] (Q — T)) :
=—00

If X.(j2) =0for|Q2| > /T, then the ideal LPH, (j 2) selects only the
term fork = 0 in the sum, and scales the result:

H(e/%T) X (j Q) Q| <n/T

Y, (j2) = Q| > /T,



Thus if X.(j ) is bandlimited and sampled above the Nyquist rate, then the
output is related to the input by

Y, (jR) = Hert(j 2) X (j2),
where

QT
M) {H(ef ) Q| < 7/T

12| > /T

Is the effective frequency response of the system.

5 Continuous-time processing of discrete-time
signals

It is conceptually useful to consider continuous-time pssng of
discrete-time signals. A system to perform this task is:

h[n], H(e’®)
Since the D/C converter includes an ideal LRE(j 2) and therefore also
Y. (j2) will be zero for|2| > =/ T. Thus the C/D converter samples(t)
without aliasing and we have

o

sinfw(t —nT)/T]
xe(t) = _Z_ X = T
and
> sinfz(t —nT)/T]
vet) =Y yln] TG AT T

n=—oo



wherex[n] = x.(nT) andy[n] = y.(nT). In the frequency domain,

Xc(jQ) =TX(@®T), Q| <na/T,
Y.(jQ) = H.(GX:(Q), Q] <x/T,

: 1 T
Y(e®) = =Y (] 7), | < 7.

The overall system therefore behaves like a discrete-tysm with
frequency response

H(e'®) = H, (]%) w| < 7.

Equivalently, the overall frequency response of the systdhibe equal to a
given H(e’®) if the frequency of the continuous-time system is

H(jQ)=HE*T), |Q <n=/T

SinceX.(j2) =0for || > n/T, H.(j2) may be chosen arbitrarily above
w/T.

6 Changing sampling rate using discrete-time
processing
Given the sequence

x[n] = x.(nT)

obtained by sampling (with pericHl) the signalx.(¢), we often want to
change the sampling rate (to peridd):

x'[n] = xc(nT").

One approach is to reconstrugt(z) from x[n], and then resample with new
period7’. However, we want to do this using only discrete-time openat
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6.1 Samplingratereduction by integer factor

Compressor
— M —
x[n] xg[n] = x[nM]
Sampling Sampling
period T period T'=MT

The sampling rateompressor implements the following function:
xg[n] = xnM] =x.(nMT).

Herex,[n] is exactly the sequence that would be obtained by samplitig
with period7’ = M T.

If X.(j2) =0for |2 > Qu, thenx,[n] is an exact (unaliased)
representation of.(¢) if 7/(MT) > Qn.

In the frequency domain we have

o .e]

ven=g X %((7-7))
k=—o0

Y (ed® [ % [ o 2wr
a(e’?) = T c\J T T T .
r=—0o0

SinceT’ = M T, and noting that withr =i + kM we can write the
summation over as a summation overoo < k < ooand0 <i <M — 1, we

obtain
[ i ( (MT B 27;k B 12\;;))}

and

S

Xq(e'?) =

Ska
M

|§||

X(ej(a)/M—thl/M))

<)~
Il
(e
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X (j€2)
T'=MT: case M=2
Q
0
1 Xs(j2)
NN N S
| I I Q
_2n 0 27
T ) T
11 X(e/?)
AN AN
| I w
-2 0 2
1 Xa ()
\WAVAVAV/.VAVAVAY/
I I I I I I Q
_2n 0 2
T’ T’
1 Xg(el?)
MT
| I w
-2 0 2

Applying a compressor to a signal can result in aliasingsThin be avoided

(at the cost of some information) by prefiltering with a lowpdilter, and then
compressing the sampling rate:

—»

x[n]

LPF
Gain=1
Q.=na/M

Sampling
period T

.

Compressor
—
- I M
X[n]
Sampling
period T

Xq[n] = x[nM]
Sampling
period T'=MT

This is referred to adownsampling (or decimation) by a factor M.
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6.2 Increasing samplingrateby integer factor

With underlying continuous-time signal (¢), we want to obtain samples
xi[n] = x¢(n T,)

from
x[n] = xc(nT),

whereT’ = T/L. Therefore
xi[n] = x[n/L] = x.(nT/L), n=0,+L,£2L,....

This is referred to agpsampling (or interpolating) by afactor L, and is
performed byexpanding the sampling rate, and then lowpass filtering:

LPF
Expander .
—P T L —» Gain=L ———»

x[n] Xe[n] | Qe =m/L xi[n]
Sampling Sampling Sampling
period T period T'=T/L period T'=T/L

The expanded signal is
x[n/L], n=0+L,+2L,...,
Xe[n] = )
0, otherwise
o0
= Y x[kld[n —kL].
k=—o00

An example of upsampling in the discrete-time domain is shbalow:
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x[n]

1y ] L] i

Xe[n]
R S R S
| : 0 | !
x;[n]

TT[TT )
XLy 0 Skt X

The Fourier transform of the expanded signal is

Xe(e/®) = ) ( > x[k]S[n—kL]) e jon

n=—00 \k=-—o00
o0
= Y x[kle /O = x(e/*h).
k=—o00

Final upsampling is obtained by lowpass filtering the exgahsignal.
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T'=T/L: case L=2
Q
0
11 X(e’?)
T
| I 0)
21 0 2
1 Xe(ejw)
i i i i i i w
_2n 0 2n
L L
L Hi (e]a))
| I w
27 -7 0 7 2w
L 1X;(e/?)
| | I w

We can obtain an interpolation formula fe#]n] in terms ofx[r]: since the
LPF has impulse response

_sin(zn/L)
=
we have
N sinfz(n —kL)/L]
xiln) = ) xlk] x(n—kL)/L

k=—o0
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6.3 Changingthe samplingrate by a noninteger factor

By cascading upsampling (by factor L) and downsampling émydr M), the
sampling rate can be changed by a noninteger factor.

o xeln] o i)

| LPF |1 | LPF |
—r 1L — Gain=L —| Gain=L | | M [—
x[n] Q. =m/L| Qe =n/M 1 Xq 1]

L__________—— L____________"_
T TIL TIL TIL TMIL

This forms the basis ahultirate signal processing, where highly efficient
structures are developed for implementing complicatedadigrocessing
operations. The discrete wavelet transform (DWT) can beldged in this
framework.
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