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Two-dimensional discrete signals

A 2-D discrete signal (also called a sequence or array) is a function
defined over the set of ordered pairs of integers:

x = {x(n1, n2),−∞ < n1, n2 <∞}.
Thus x(n1, n2) represents the sample of the signal x at the point
(n1, n2). x(n1, n2) for noninteger n1 or n2 is undefined.

An example of a 2-D sequence is shown below:
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In this figure the height at (n1, n2) is the amplitude of x at that point.
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Representing 2-D sequences

A more convenient way of depicting a 2-D sequence is
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The sequence values are assumed to be zero at the values not marked
with circles. A circle with no amplitude indicated represents a unit
sample.

Multidimensional digital signal processing



2D signals Multidimensional systems Signals and systems in the frequency domain Sampling The multidimensional discrete Fourier transform Other extensions of linear system theory

Impulse

Certain sequences and classes of sequences play an important role in 2-D
signal processing. The impulse or unit sample sequence, denoted by
δ(n1, n2), is defined as

δ(n1, n2) =

{

1, n1 = n2 = 0

0, otherwise,

and is depicted as
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Decomposition in terms of impulses

Any sequence x(n1, n2) can be represented as a linear combination of shifted
impulses as follows:

x(n1, n2) = · · ·+ x(−1,−1)δ(n1 + 1, n2 + 1)+

+ x(0,−1)δ(n1, n2 + 1)

+ x(1,−1)δ(n1 − 1, n2 + 1) + · · ·
· · ·+ x(−1, 0)δ(n1 + 1, n2)

+ x(0, 0)δ(n1, n2)

+ x(1, 0)δ(n1 − 1, n2) + · · ·
· · ·+ x(−1, 1)δ(n1 + 1, n2 − 1)

+ x(0, 1)δ(n1, n2 − 1)

+ x(1, 1)δ(n1 − 1, n2 − 1) + · · ·

Therefore

x(n1, n2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

x(k1, k2)δ(n1 − k1, n2 − k2).

This is a convolution product, and is useful in system analysis due to the
sifting property of the impulse function.
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Line impulses

Line impulses have no counterpart in 1-D. An example of a line impulse is

x(n1, n2) = δ(n1) =

{

1, n1 = 0

0, otherwise.

This is demonstrated below:
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Other examples are δ(n2) and δ(n1 − n2).
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Step sequence

The step sequence,

u(n1, n2) =

{

1, n1, n2 ≥ 0

0, otherwise

is related to δ(n1, n2) as follows:

u(n1, n2) =

n1
∑

k1=−∞

n2
∑

k2=−∞

δ(k1, k2).

This sequence is shown below:
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Other examples of step sequences are u(n1), u(n2), and u(n1 − n2),
which have no counterpart in 1-D.
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Exponential sequences

Exponential sequences are defined by

x(n1, n2) = an1bn2 , −∞ < n1, n2 <∞,

where a and b are complex numbers. When a and b have unity
magnitude they may be written as

a = e jω1 and b = e jω2 ,

in which case the exponential sequence becomes the complex sinusoidal
sequence

x(n1, n2) = e jω1n1+jω2n2

= cos(ω1n1 + ω2n2) + j sin(ω1n1 + ω2n2).

Exponential sequences are important because they are eigenfunctions of
2-D linear shift-invariant systems.

Multidimensional digital signal processing



2D signals Multidimensional systems Signals and systems in the frequency domain Sampling The multidimensional discrete Fourier transform Other extensions of linear system theory

Separability

All the sequences presented thus far can be written in the form

x(n1, n2) = x1(n1)x2(n2).

Any sequence that can be expressed as the product of 1-D sequences in
this form is separable. Although very few actual data sequences are of
this form, they are important for two reasons:

Results for 1-D sequences that do not extend to 2-D often do extend
to 2-D separable sequences

Separability can often be used to reduce computation in digital
filtering and transform operations.
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Finite support

Finite-extent sequences are only nonzero within a finite region of
support. For example, the signal
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is nonzero only within the rectangle

0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2.
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Periodicity

A periodic sequence in 2-D can be thought of as a sequence that
repeats at regularly-spaced intervals. However, 2-D signals must repeat in
two dimensions at once, so the definition is more complex than for 1-D.

A doubly periodic sequence x̃(n1, n2) satisfies the conditions

x̃(n1, n2 + N2) = x̃(n1, n2)

x̃(n1 + N1, n2) = x̃(n1, n2).

Such a sequence for N1 = N2 = 3 is
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General periodicity

More generally, though, a periodic sequence in 2-D satisfies the conditions

x̃(n1 + N11, n2 + N21) = x̃(n1, n2)

x̃(n1 + N12, n2 + N22) = x̃(n1, n2),

where
N11N22 − N12N21 = 0.

An example of a sequence with N11 = 7, N21 = 3, N12 = −2, N22 = 4 is
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Multidimensional systems

A system is an operator that maps one signal (the input) to another (the
output):
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Systems can be described in terms of fundamental operations on
multidimensional signals.
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Fundamental operations on multidimensional sequences

Addition of two sequences x(n1, n2) and w(n1, n2) is defined
sample-by-sample as

y(n1, n2) = x(n1, n2) + w(n1, n2).

Multiplication by a constant c involves multiplication by each sample
value:

y(n1, n2) = cx(n1, n2).
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Spatial shifts

A 2-D sequence x can be linearly shifted to form a new sequence y

according to the relation

y(n1, n2) = x(n1 −m1, n2 −m2),

where (m1, m2) is the amount of the shift:
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Nonlinear transformations

A spatially-varying gain can be viewed as a generalisation of
multiplication by a constant:

y(n1, n2) = c(n1, n2)x(n1, n2).

The collection of numbers c(n1, n2) may also be regarded as a sequence,
in which case the equation above can be interpreted as the
sample-by-sample multiplication of two sequences.

Two-dimensional sequences may also be subjected to nonlinear operators.
A Memoryless nonlinearity operator acts on each sample value of the
sequence independently. For example, y(n1, n2) = [x(n1, n2)]

2 squares
each value in the sequence x .
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Linear systems

A system is linear if and only if the following two conditions hold:

If the input signal is the sum of two sequences, then the output
signal is the sum of the two corresponding output sequences

Scaling the input signal produces a scaled output signal.

Linear systems obey the principle of superposition.
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Linear systems

Since a general sequence x can be written as

x(n1, n2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

x(k1, k2)δ(n1 − k1, n2 − k2),

it follows that the response of a linear system to this signal is

y(n1, n2) = T

[

∞
∑

k1=−∞

∞
∑

k2=−∞

x(k1, k2)δ(n1 − k1, n2 − k2)

]

=

∞
∑

k1=−∞

∞
∑

k2=−∞

x(k1, k2)T [δ(n1 − k1, n2 − k2)]

=

∞
∑

k1=−∞

∞
∑

k2=−∞

x(k1, k2)hk1k2(n1 − k1, n2 − k2),

where hk1k2(n1 − k1, n2 − k2) is the response of the system to a unit
impulse at (k1, k2).
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Shift-invariant systems

A shift-invariant system is one for which a shift in the input sequence
implies a corresponding shift in the output sequence. If
y(n1, n2) = T [x(n1, n2)], the system T is shift invariant if and only if

T [x(n1 −m1, n2 −m2)] = y(n1 −m1, n2 −m2)

for all sequences x and linear shifts (m1, m2).
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Linear shift-invariant systems

The spatially-varying impulse response for a linear system

hk1k2(n1 − k1, n2 − k2) = T [δ(n1 − k1, n2 − k2)] ,

when evaluated at k1 = k2 = 0 implies that

h00(n1, n2) = T [δ(n1, n2)].

Applying the principle of shift invariance we get

hk1k2(n1, n2) = h00(n1 − k1, n2 − k2).

The spatially-varying impulse response becomes a shifted replica of a
spatially-invariant impulse response. Defining h(n1, n2) = h00(n1, n2) we
can write the input-output relation as

y(n1, n2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

x(k1, k2)h(n1 − k1, n2 − k2).

This is the 2-D convolution product.
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Convolution in 2-D

Two-dimensional convolution is very similar to its 1-D counterpart, and
there is also a computational interpretation of the convolution sum. To
obtain this, we consider x(n1, n2) and h(n1 − k1, n2 − k2) as functions of k1

and k2. To generate the sequence h(n1 − k1, n2 − k2) from h(n1, n2), h is
first reflected about both the k1 and k2 axes, and then translated so that
the sample h(0, 0) lies at the point (n1, n2):
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The product sequence x(k1, k2)h(n1 − k1, n2 − k2) can then be formed,
and the output sample value y(n1, n2) is computed by summing the
nonzero sample values in the product sequence.
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Properties of linear systems

The properties of LSI 2-D systems are analogous to those for 1-D LTI
systems. For example, when 2-D LSI systems are connected in parallel or
cascade, then their overall response is the sum and the convolution of the
system impulse responses respectively. Also, a 2-D LSI system is stable in
the BIBO sense if and only if its impulse response is absolutely summable:

∞
∑

n1=−∞

∞
∑

n2=−∞

|h(n1, n2)| = S1 <∞.

However, one must be careful not to take the analogy too far — 2-D LSI
systems are considerably more complex than 1-D LTI systems.
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Separable impulse response

One property of 2-D systems that has no counterpart in 1-D is
separability. A separable system is an LSI system whose impulse response
is a separable sequence, so h(n1, n2) = h1(n1)h2(n2). The input signals
processed by a separable system and the signals produced by it need not
be separable. For separable systems the convolution sum decomposes as

y(n1, n2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

x(n1 − k1, n2 − k2)h1(k1)h2(k2)

=
∞
∑

k1=−∞

h1(k1)
∞
∑

k2=−∞

x(n1 − k1, n2 − k2)h2(k2).
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Separable impulse response (2)

Defining

g(n1, n2) =

∞
∑

k2=−∞

x(n1, n2 − k2)h2(k2),

this becomes

y(n1, n2) =

∞
∑

k1=−∞

h1(k1)g(n1 − k1, n2).

The array g(n1, n2) can be computed by performing 1-D convolution
between each column of x (n1 constant) and the 1-D sequence h2. The
output array y can then be computed by convolving each row of g (n2

constant) with the 1-D sequence h1. Thus the output can be obtained as
a series of 1-D convolutions. Note that the row convolutions can also be
performed before the column convolutions.
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Region of support

Another difference between 1-D and 2-D systems involves regions of

support of signals. In 1-D it was useful to characterise a system as
causal if the outputs did not preceed the inputs. For most 2-D
applications the independent variables do not correspond to time, and
causality is not a natural constraint.

The impulse response h[n] of a 1-D causal LTI system is zero for n < 0.
One generalisation of the concept of causality for 2-D systems can be
made by requiring that the impulse response be zero outside of some
region of support.
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Region of support (2)

Two common regions of support are:

Quadrant support Wedge support
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Quadrant support, where sequences are nonzero only in one
quadrant of the (n1, n2)-plane
Wedge support, which is a generalisation of quadrant support, and
implies that the sequence is only nonzero inside a sector defined by
two rays emanating from the origin.

Different regions of support lead to systems with different characteristics.
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Signals and systems in the frequency domain

Complex sinusoidal sequences of the form

x(n1, n2) = e jω1n1+jω2n2

are eigenfunctions of 2-D LSI systems:

y(n1, n2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

e jω1(n1−k1)+jω2(n2−k2)h(k1, k2)

= e jω1n1+jω2n2H(ω1, ω2),

where H(ω1, ω2) is the frequency response

H(ω1, ω2) =

∞
∑

n1=−∞

∞
∑

n2=−∞

h(n1, n2)e
−jω1n1−jω2n2 .

This function is periodic in both the horizontal and vertical frequency
variables:

H(ω1 + 2π, ω2) = H(ω1, ω2),

H(ω1, ω2 + 2π) = H(ω1, ω2).
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Multidimensional Fourier transform

The multidimensional Fourier transform analysis equation is therefore

X (ω1, ω2) =

∞
∑

n1=−∞

∞
∑

n2=−∞

x(n1, n2)e
−jω1n1−jω2n2 .

The corresponding synthesis equation is

x(n1, n2) =
1

4π2

∫ π

−π

∫ π

−π

X (ω1, ω2)e
jω1n1+jω2n2dω1dω2.

The Fourier transform can be shown to exist whenever the sequence
x(n1, n2) is absolutely summable.
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Fourier transform properties

The properties of the Fourier transform are similar to those in 1-D, with
the exception of some added complexity due to the introduction of an
additional parameter. For example, the time-reversal property in 1-D
becomes a more general reflection property in 2-D:

x(−n1, n2)
F←→X (−ω1, ω2)

x(n1,−n2)
F←→X (ω1,−ω2)

x(−n1,−n2)
F←→X (−ω1,−ω2).
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Example: Frequency response of a simple system

The frequency response of the system with impulse response
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is given by

H(ω1, ω2) =
∞
∑

n1=−∞

∞
∑

n2=−∞

[δ(n1 + 1, n2) + δ(n1 − 1, n2)+

δ(n1, n2 + 1) + δ(n1, n2 − 1)]e−jω1n1−jω2n2 .
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Example: Frequency response of a simple system (2)

This evaluates to

H(ω1, ω2) = e jω1 + e−jω1 + e jω2 + e−jω2 = 2(cosω1 + cosω2).

and is shown below:
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Example: Separable ideal lowpass filter

Consider the ideal lowpass filter specified by the frequency response

H(ω1, ω2) =

{

1, |ω1| ≤ a < π, |ω2| ≤ b < π

0, otherwise,

indicated in the figure below:
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Example: Separable ideal lowpass filter (2)

Since this system is separable the inverse Fourier transform is quite
simple:

h(n1, n2) =
1

4π2

∫ a

−a

∫ b

−b

e jω1n1+jω2n2dω2dω1

=

(

1

2π

∫ a

−a

e−jω1n1dω1

)

(

1

2π

∫ b

−b

e−jω2n2dω2

)

=
sin(an1)

πn1

sin(bn2)

πn2
.
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Example: Separable ideal lowpass filter (3)

This function is depicted in the surface plot and image below, for the
case of a = 0.4π and b = 0.6π. The gray level at any point in the image
is proportional to the function value:

−10
0

10

−10

0

10

0

0.1

0.2

n
1

n
2

h(
n 1,n

2)

n
1

n 2

Multidimensional digital signal processing



2D signals Multidimensional systems Signals and systems in the frequency domain Sampling The multidimensional discrete Fourier transform Other extensions of linear system theory

Example: Nonseparable lowpass filter

As a more complex example, consider the problem of determining the
impulse response of the ideal circular lowpass filter

H(ω1, ω2) =

{

1, ω2
1 + ω2

2 ≤ R2 < π2

0, otherwise.

This frequency response, which is not separable, is shown below:

R
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The impulse response is given by

h(n1, n2) =
1

4π2

∫∫

A

e jω1n1+jω2n2dω1dω2,

where A is the shaded area in the above figure. Defining

ω =
√

ω2
1 + ω2

2 , φ = tan−1 ω2

ω1
, θ = tan−1 n1

n1
,

the impulse response becomes

h(n1, n2) =
1

4π2

∫ R

0

∫ 2π

0

ωe jω
√

n2
1+n2

2 cos(θ−φ)dφdω

=
1

2π

∫ R

0

ωJ0

(

ω

√

n2
1 + n2

2

)

dω

=
R

2π

J1

(

R
√

n2
1 + n2

2

)

√

n2
1 + n2

2

where J0 and J1 are Bessel functions of the first kind of orders 0 and 1
respectively.
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This function is shown below for R = 0.5π:
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In general, the 2-D Fourier transform of a rotationally-symmetric function
is itself rotationally symmetric: the 1-D profiles are related according to
the Hankel transform

F (q) = 2π

∫ ∞

0

f (r)J0(2πqr)rdr .
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Sampling

The most common way of representing a continuous signal is in terms of
a discrete signal obtained by periodic sampling. The simplest way of
generalising 1-D periodic sampling to the 2-D case is by using
rectangular sampling, where periodic sampling is done in rectangular
coordinates. If xa(t1, t2) is a continuous-time waveform, then the discrete
signal obtained by rectangular sampling is

x(n1, n2) = xa(n1T1, n2T2),

where T1 and T2 are the horizontal and vertical sampling intervals. This
corresponds to samples in the plane:
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The criterion for being able to reconstruct xa from the samples is that T1

and T2 be chosen small enough that

Xa(Ω1, Ω2) = 0 for |Ω1| ≥
π

T1
, |Ω2| ≥

π

T2
.

Thus the signal must be bandlimited in the 2-D Fourier domain. If this
condition is not met, aliasing results in the same way as in 1-D.

Rectangular sampling is not the only option for periodic sampling. For
circularly-symmetric bandlimited signals it can be shown that there is no
more efficient sampling scheme than hexagonal sampling. That is, such
signals can be represented by fewer sample points than with any other
sampling geometry. Hexagonal sampling is performed on a grid such as
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Sometimes the manner in which data are acquired determines the
sampling pattern. For example, in the preparation of seismic maps it is
common for a boat to tow a uniform microphone array while covering an
area. The presence of a cross current can cause an offset in the angle of
the array, resulting in unusual sampling:

current
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If a signal is sampled in such a way that aliasing is avoided, it is in
general possible to transform the representation onto the sampling grid of
choice. In principle one just needs to reconstruct the signal, and resample
it as required.
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The multidimensional discrete Fourier transform

The multidimensional DFT is a simple generalisation of that for 1-D: the
forward transform is given by

X (k1, k2) =

N1−1
∑

n1=0

N2−1
∑

n2=0

x(n1, n2)e
−j2πk1n1/N1−j2πk2n2/N2

and the inverse transform by

x(n1, n2) =

N1−1
∑

k1=0

N2−1
∑

k2=0

X (k1, k2)e
j2πk1n1/N1+j2πk2n2/N2

The first equation formally holds for 0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1
and the second for 0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1.
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The real part of some of the basis functions for the 2-D DFT are

Multidimensional digital signal processing



2D signals Multidimensional systems Signals and systems in the frequency domain Sampling The multidimensional discrete Fourier transform Other extensions of linear system theory

If the sequence x(n1, n2) is only supported on 0 ≤ n1 ≤ N1 − 1,
0 ≤ n2 ≤ N2 − 1 (and is therefore zero outside of this area), then the
DFT consists of samples of the 2-D Fourier transform

X (k1, k2) = X (ω1, ω2)|ω1=2πk1/N1,ω2=2πk2/N2
.

The properties of the 2-D DFT are similar to those in 1-D. In particular,
the signals obtained from both the DFT and the inverse DFT are
implicitly doubly periodic with period N1 in the horizontal direction and
N2 in the vertical direction. Circular convolution according to the relation

y(n1, n2) =

N1−1
∑

m1=0

N2−1
∑

m2=0

h(m1, m2)x(((n1 −m1))N1 , ((n2 −m2))N2)

is therefore implicit in all shifts involved in the DFT properties.
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A direct implementation of the DFT requires N2
1N2

2 complex
multiplications and additions. However, fast Fourier transforms can also
be developed in multiple dimensions, and in 2-D require of the order of
N1N2 log2 N1N2 operations. These methods rely on a row-column
decomposition of the DFT sum:

X (k1, k2) =

N1−1
∑

n1=0

[

N2−1
∑

n2=0

x(n1, n2)e
−j2πk2n2/N2

]

e−j2πk1n1/N1 .

Thus the 2-D DFT can be calculated by performing 1-D DFTs on each
column of x , followed by 1-D DFTs on each row. Fast algorithms for 1-D
DFTs can therefore be used to develop multidimensional FFT methods.
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Other extensions of linear system theory

Aspects of linear system theory for 1-D signals carry over to multiple
dimensions, but often have very different properties.
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Multidimensional recursive systems

LSI systems are generally implemented using difference equations. In the
2-D case a difference equation takes the form

N1
∑

k1=0

N2
∑

k2=0

b(k1, k2)y(n1 − k1, n2 − k2)

=

M1
∑

r1=0

M2
∑

r2=0

a(r1, r2)x(n1 − r1, n2 − r2).

However, although multidimensional difference equations represent a
generalisation of 1-D difference equations, they are considerably more
complex, and are in fact quite different. For example, issues such as
stability are far more difficult to understand for higher-dimensional
systems.
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Multidimensional recursive systems

A two-dimensional z-transform can be defined according to

H(z1, z2) =

∞
∑

k1=−∞

∞
∑

k2=−∞

h(k1, k2)z
−k1

1 z−k2

2 .

This transform is very different in its 2-D form: poles and zeros form
continuous surfaces in a 4-D space. Also, it is generally not possible to
factorise a 2-D polynomial (there is no fundamental theorem of algebra
for multidimensional polynomials). Nonetheless, the multidimensional
z-transform has been exhaustively analysed in the literature, and plays an
important role in the understanding of multidimensional systems.

Multidimensional digital signal processing



2D signals Multidimensional systems Signals and systems in the frequency domain Sampling The multidimensional discrete Fourier transform Other extensions of linear system theory

Design and implementation of 2-D FIR filters

The principles and methods of FIR filter design in 1-D extend naturally to
2-D. However, since causality is seldom an issue, a useful linear phase
condition is the zero phase condition

H(ω1, ω2) = H∗(ω1, ω2).

A linear phase response for digital filters is important to many
applications in multidimensional DSP. For example, in image processing a
nonlinear phase response tends to destroy lines and edges:

Original image
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Design and implementation of 2-D FIR filters

Linear-phase lowpass filter Nonlinear-phase lowpass filter
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Design and implementation of 2-D FIR filters

There are multidimensional counterparts to the window method of filter
design, as well as the frequency-sampling method, the optimal method,
and most others. Also, since FIR filters are specified in terms of
convolutions, the multidimensional FFT can be used in the
implementation. This becomes extremely important in high dimensions,
due to the vast amount of data involved.

Shown below are examples of filter responses in 2-D:

Lowpass filter Bandpass filter
Multidimensional digital signal processing
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