EEE4001F EXAM DIGITAL SIGNAL PROCESSING

University of Cape Town Department of Electrical Engineering

> June 2015 3 hours

Information

- The exam is closed-book.
- There are two parts to this exam.
- Part A has six questions totalling 50 marks. You must answer all of them.
- Part B has ten questions totalling 50 marks. You must answer all of them.
- Parts A and B must be answered in different sets of exam books, which will be collected separately.
- A table of standard Fourier transform and z-transform pairs appears at the end of this paper.
- You have 3 hours.

PART A

Digital signal processing.

1. Consider a causal linear time-invariant system which results in the output

$$y[n] = \left(\frac{1}{3}\right)^n u[n]$$

when the input is

$$x[n] = \frac{1}{4} \left(\frac{1}{2}\right)^{n+1} u[n+1].$$

- (a) Plot x[n].
- (b) Determine a closed-form expression for the impulse response h[n] of the system.
- (c) Is the system stable? Why?

(10 marks)

- 2. (a) An LTI system has impulse response $h[n] = 5(1/2)^n u[n]$ where u[n] is the unit step sequence. Use the discrete-time Fourier transform to find the output of this system when the input is $x[n] = (1/3)^n u[n]$.
 - (b) Find the signal h[n] with the following DTFT:

$$H(e^{j\omega}) = 2(e^{j\omega})^2 - \frac{3(e^{j\omega})^{-3}}{e^{j\omega} - \frac{1}{2}}.$$

(10 marks)

3. Let x[n] be the input and y[n] the output of a finite impulse response filter such that

$$y[n] = 4x[n] - x[n-2].$$

- (a) Find the poles and zeros of the filter and plot them in the z-plane.
- (b) Sketch the magnitude of the frequency response.
- (c) Determine the gain of the filter at frequencies 0 and $\pi/2$ radians per sample.
- (d) Find an expression for the magnitude of the frequency response of this filter.

(10 marks)

4. (a) You measure

$$X_1[0] = 4, \quad X_1[1] = -j4, \quad X_1[2] = -2, \quad X_1[3] = j4$$

and

 $X_2[0] = 2, \quad X_2[1] = 1 - j, \quad X_2[2] = 2, \quad X_2[3] = 1 + j,$

where $X_1[k]$ is the DFT of $x_1[n]$ and $X_2[k]$ is the DFT of $x_2[n]$. What is the 4-point circular convolution of $x_1[n]$ and $x_2[n]$?

(b) How you would use the FFT to do linear convolution of two signals, each of length 4?

(10 marks)

5. Specify a scheme for reducing the sampling rate of a signal to 0.75 of its original sampling frequency. Sketch the magnitude of the frequency response of any filters employed.

(5 marks)

6. Suppose a linear time-invariant system is described by the following system function:

$$H(z) = \frac{(z - \frac{1}{2})(z + 2)(z^2 + \frac{1}{9})}{(z^2 + 2z + 5)(z^2 - 4z + 13)}$$

- (a) Draw a pole-zero plot for the system
- (b) Determine all possible regions of convergence, and for each indicate whether the corresponding inverse z-transform is left-sided, right-sided, or two-sided. What can you say about the stability of H(z)?

(5 marks)

PART B

Wavelets and frames.

P1: Let the function f(x) be defined by

$$f(x) = e^{-\frac{1}{2}x^2} \qquad -\infty < x < \infty \tag{1}$$

- **P1-a:** Calculate $||f(x)||_2$, the L_2 -norm of f(x).
- **P1-b:** Let $\tilde{f}(x)$ denote f(x) normalized. Write down the expression for $\tilde{f}(x)$.

(2 + 1 = 3 Marks)

P2: Consider the following complete set of orthogonal functions on the interval $(-\pi, \pi)$:

$$1, \left\{ \cos\left(nt\right) \mid n \in \mathbb{N} \right\}, \left\{ \sin\left(nt\right) \mid n \in \mathbb{N} \right\}$$

$$(2)$$

- **P2-a:** Calculate the L_2 -norm of the functions 1, $\cos(nt)$ and $\sin(nt)$ on the interval $(-\pi, \pi)$.
- **P2-b:** Utilizing Dirac's bra-ket notation, consider the following resolution of identity for the L_2 -space of functions with support $(-\pi, \pi)$:

$$\mathbb{I} = |\frac{1}{\sqrt{2\pi}} > < \frac{1}{\sqrt{2\pi}}| + \sum_{n \in \mathbb{N}} |\frac{1}{\sqrt{\pi}} \cos(nt) > < \frac{1}{\sqrt{\pi}} \cos(nt)| + \sum_{n \in \mathbb{N}} |\frac{1}{\sqrt{\pi}} \sin(nt) > < \frac{1}{\sqrt{\pi}} \sin(nt)|$$
(3)

Let the function f(t) satisfy Dirichlet's conditions on the interval $(-\pi, \pi)$, and be zero outside this interval. In bra-ket notation write |f(t) > for f(t). Assume that the operation of (3) from the left onto |f(t) > results in:

$$\mathbb{I}|f(t)\rangle = |\frac{1}{\sqrt{2\pi}}\rangle < \frac{1}{\sqrt{2\pi}}|f(t)\rangle + \sum_{n\in\mathbb{N}}|\frac{1}{\sqrt{\pi}}\cos\left(nt\right)\rangle < \frac{1}{\sqrt{\pi}}\cos\left(nt\right)|f(t)\rangle$$
(4)

Is f(t) an even function or an odd function?

P2-c: Let the function f(t) satisfy Dirichlet's conditions on the interval $(-\pi, \pi)$, and be zero outside this interval. In bra-ket notation write |f(t) > for f(t). Assume that the

operation of (3) from the left onto $|f(t)\rangle$ results in:

$$\mathbb{I}|f(t)\rangle = \sum_{n \in \mathbb{N}} \left|\frac{1}{\sqrt{\pi}}\sin\left(nt\right)\right| > < \frac{1}{\sqrt{\pi}}\sin\left(nt\right)|f(t)\rangle \tag{5}$$

Is f(t) an even function or an odd function?

- **P2-d:** What is the expression for the resolution of identity, which characterizes the space of even functions with support $(-\pi, \pi)$.
- **P2-e:** What is the expression for the resolution of identity, which characterizes the space of **odd** functions with support $(-\pi, \pi)$?

(2+1+1+2+2=8 Marks)

P3: Let the **normalized** functions $\varphi(t)$ and $\psi(t)$ denote the scaling function and the wavelet of a Multiresolution Analysis (MRA) in Hilbert space, respectively. Let the function $\varphi(t)$ generate the function space ν_0 . Let the function $\psi(t)$ and its compressed versions generate the spaces, W_0, W_1, W_2, \cdots . Consider the following representation for f(t):

$$f(t) = \sum_{k=-\infty}^{\infty} c_k \varphi(t-k) + \sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} d_{j,k} 2^{\frac{j}{2}} \psi(2^j t - k)$$
(6)

- **P3-a:** Write down the expression for c_k .
- **P3-b:** Write down the expression for $d_{j,k}$.
- **P3-c:** Write down the expression for the resolution of identity using the set of scaling and wavelet functions!

(2+2+2=6 Marks)

- **P4-a:** Given general "low pass" filter coefficient h(n) write down the two-scale dilation equation for the normalized scaling function $\varphi(t)$.
- **P4-b:** Given general "high pass" filter coefficients g(n) write down the two-scale dilation equation for the normalized wavelet $\psi(t)$.

(2 + 2 = 4 Marks)

P5-a: Determine the filter coefficients h(n) for the triangle (piece-wise linear) scaling function. **P5-b:** Do the coefficients h(n) constitute a "low pass" filter or a "high pass" filter? Why? **P5-c:** Determine the filter coefficients g(n) for the triangle (piece-wise linear) wavelet.

P5-d: Do the coefficients g(n) constitute a "low pass" filter or a "high pass" filter? Why?

(2+2+2+2=8 Marks)

P6: Consider the fairly general function f(t). Denote the Fourier transform of f(t) by $F(\omega)$. Construct $F_{\mathcal{M}}(\omega)$ as follows:

$$F_{\mathcal{M}}(\omega) = \frac{F(\omega)}{\sqrt{\sum_{n=-\infty}^{\infty} |F(\omega + 2\pi n)|^2}}$$
(7)

Let $f_{\mathcal{M}}(t)$ denote the inverse Fourier transform of $F_{\mathcal{M}}(\omega)$. Using the Parseval's Theorem calculate the norm of $f_{\mathcal{M}}(t)$.

(4 Marks)

P7: Using the general dilation equation for the wavelet function, express the five-generations compressed normalized wavelet

$$2^{\frac{5}{2}}\psi(2^{5}t-m)$$

in terms of linear superposition of $2^{\frac{6}{2}}\varphi(2^6t-n)$ over n.

(4 Marks)

P8: Construct and plot the Mexican-hat wavelet $\mathcal{M}_h(t)$.

(1 + 1 = 2 Marks)

P9: Let $|\mathbf{e}_1 >$ and $|\mathbf{e}_2 >$ be unit normal vectors in the (x, y)-plane.

Let the vectors $|\mathbf{f}_1 > \text{and } |\mathbf{f}_2 > \text{be defined by the following equations:}$

$$\mathbf{f}_1 > = 4 |\mathbf{e}_1 > -|\mathbf{e}_2 > \tag{8a}$$

$$\mathbf{f}_2 > = 3|\mathbf{e}_1 > +2|\mathbf{e}_2 > \tag{8b}$$

- **P9-a:** Construct the dual vectors $\langle \tilde{f}_1 |$ and $\langle \tilde{f}_2 |$ corresponding to $|f_1 \rangle$ and $|f_2 \rangle$, respectively, first graphically and then analytically.
- **P9-b:** Employ Dirac's bra-ket notation. Resolve the identity operator \mathbb{I} in terms of the ket-vectors $|\mathbf{f}_1 > \text{and } |\mathbf{f}_2 > \text{and their dual bra-vectors} < \widetilde{\mathbf{f}}_1 | \text{ and } < \widetilde{\mathbf{f}}_2 |$.

(2 + 1 = 3 Marks)

P10: Let $|\mathbf{e}_1 >$ and $|\mathbf{e}_2 >$ denote unit normal vectors in the (x, y)-plane.

Let the ket vectors $|\mathbf{f}_1 >$, $|\mathbf{f}_2 >$ and $|\mathbf{f}_3 >$ be defined by the following equations:

$$\mathbf{f}_1 > = 2|\mathbf{e}_1 > -|\mathbf{e}_1 > \tag{9a}$$

$$\mathbf{f}_2 > = 3|\mathbf{e}_1 > +|\mathbf{e}_2 > \tag{9b}$$

$$|\mathbf{f}_3\rangle = 2|\mathbf{e}_1\rangle + 2|\mathbf{e}_2\rangle \tag{9c}$$

The over-complete set of vectors $|\mathbf{f}_1 \rangle$, $|\mathbf{f}_2 \rangle$ and $|\mathbf{f}_3 \rangle$ constitutes a frame.

P10-a: Determine the dual frame (bra vectors) $< \tilde{f}_1|, < \tilde{f}_2|$ and $< \tilde{f}_3|$.

P10-b: Resolve the identity operator \mathbb{I} in the plane in terms of the frame vectors $|\mathbf{f}_1 \rangle$, $|\mathbf{f}_2 \rangle$ and $|\mathbf{f}_3 \rangle$ and their corresponding dual frame vectors $\langle \widetilde{\mathbf{f}}_1 |, \langle \widetilde{\mathbf{f}}_2 |$ and $\langle \widetilde{\mathbf{f}}_3 |$.

$$(4 + 4 = 8 \text{ Marks})$$

Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
$\frac{1}{ax[n] + by[n]}$	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n_d} X(e^{j\omega})$	Time shift
$e^{j\omega_0n}x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

Common Fourier transform pairs

_

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-a e^{-j \omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N-1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r \cos(\omega_0) z^{-1}}{1 - 2r \cos(\omega_0) z^{-1} + r^2 z^{-2}}$	z > r

_