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Information

• The exam is closed-book.

• There are two parts to this exam.

• Part A has six questions totalling 50 marks. You must answer all of them.

• Part B has ten questions totalling 50 marks. You must answer all of them.

• Parts A and B must be answered in different sets of exam books, which will be collected

separately.

• A table of standard Fourier transform and z-transform pairs appears at the end of this

paper.

• You have 3 hours.
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PART A

Basic digital signal processing theory.

1. A sequence x[n] has a zero-phase DTFT X(ejω) given below:

1

ω
π−π π/3−π/3

X(ejω)

Sketch the DTFT of the sequence 2x[n]e−jπn/3.

(5 marks)

2. Find the impulse response corresponding to the system function

H(z) =
7z2 − 4z

z2 − 3
2
z − 1

for each possible region of convergence. In each case comment on the causality and

stability properties of the system.

(10 marks)

3. Let x[n] be a discrete-time signal obtained by sampling the continuous signal x(t) at a

sampling rate fs = 1/T Hz:

x[n] = x(nT ).

Assume that no aliasing occurs. Describe by sketching a block diagram and providing a

clear explanation, how you would implement a discrete-time system with input x[n] and

output y[n] that delays x[n] by half a sample, so

y[n] = x(nT − T/2).

Hint: make use of upsamplers, downsamplers, and ideal filters.

(5 marks)
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4. Consider the following discrete-time sequences:

x[n] = 2δ[n] + 3δ[n− 1] + δ[n− 2] + 5δ[n− 3]

y[n] = δ[n]− 2δ[n− 3].

(a) Write an expression for the 4-point DFT X [k] of x[n], and find the value X [1].

(b) Find the 4-point inverse DFT of X [k]W k
4 , where X [k] is the 4-point DFT of x[n] and

W4 = e−j 2π
4 .

(c) Find the 4-point circular convolution of x[n] with y[n].

(d) Explain how you would calculate the result for part (c) using the fast Fourier transform

(FFT).

(e) How could you use the FFT to calculate the linear convolution of x[n] and y[n]?

(10 marks)

5. A discrete-time, causal, linear time-invariant filter H(z) has

six zeros located at: z = e±jπ/8, z = e±j7π/8, z = ±1

and six poles located at: z = ±j0.95, z = 0.95e±j9π/20, z = 0.95e±j11π/20.

(a) Plot the pole-zero diagram of H(z) in the z-plane and provide its region of convergence.

(b) Sketch the magnitude response |H(ejω)| directly from the pole-zero plot, and indicate the

approximate gain at ω = π/2.

(c) What type of frequency-selective filter is H(ejω)? Explain your answer.

(d) Answer the following questions, explaining your answers:

i. Is H(z) an IIR or FIR filter?

ii. Is H(z) a stable filter?

iii. Is h[n], the impulse response of the filter, a real function?

(10 marks)
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6. Consider a causal LTI system with the system function

H(z) =
1− a−1z−1

1− az−1

where a is real.

(a) Write a difference equation that relates the input and the output of this system

(b) For what range of values of a is the system stable?

(c) For a = 1/2 plot the pole-zero diagram and show the ROC.

(d) Find the impulse response h[n] for this system for a = 1/2.

(e) Determine and plot the magnitude response of this system for a = 1/2. What type of

system is it?

(10 marks)
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PART B

Wavelets and frames.

P1: Let the function f(t) be defined by

f(t) =





sin(nπt) −1 < t < 1

0 elsewhere
(1)

P1-a: Calculate ‖f(t)‖2, the L2−norm of f(t).

(2 marks)

P1-b: Let f̃(t) denote f(t) normalized; i.e., ‖f̃(t)‖2 = 1. Write down the expression for

f̃(t).

(2 marks)
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P2: Consider the following complete set of orthonormal functions on the interval (−1, 1):

1√
2
, {cos (nπt) |n ∈ N} , {sin (nπt) |n ∈ N} (2)

Utilizing Dirac’s bracket notation, consider the following resolution of identity for the

L2−space of functions with support (−1, 1):

I = | 1√
2
><

1√
2
| +

∑

n∈N

| cos (nπt) >< cos (nπt) |

+
∑

n∈N

| sin (nπt) >< sin (nπt) | (3)

Let the function f(t) satisfy Dirichlet’s conditions on the interval (−1, 1), and be zero

outside this interval. In bracket notation write |f(t) > for f(t). Operate (3) from the left

onto the function |f(t) > to obtain:

I|f(t) >= | 1√
2
><

1√
2
|f(x) > +

∑

n∈N

| cos (nπt) >< cos (nπt) |f(t) >

+
∑

n∈N

| sin (nπt) >< sin (nπt) |f(t) >

(4)

It is self-evident that certain groups of terms in (4) vanish for even- or odd-functions, and

thus the Eq. (4) simplifies for such functions.

P2-a: Simplify the expression on the right-hand side of the Eq. (4) for functions f(t) satisfying

the condition f(−t) = f(t) on the interval (−1, 1).

(2 marks)

P2-b: Deduce from your result obtained in P2-a the expression for the resolution of identity,

which characterizes the space of even functions with support (−1, 1).

(2 marks)

P2-c: Simplify the expression on the right-hand side of the Eq. (4) for functions f(t) satisfying

the condition f(−t) = −f(t) on the interval (−1, 1).

(2 marks)

P2-d: Deduce from your result obtained in P2-c the expression for the resolution of identity,

which characterizes the space of odd functions with support (−1, 1).

(2 marks)
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P3: Let the functions ϕ(t) and ψ(t) denote the scaling function and the wavelet for a

Multiresolution Analysis (MRA) in Hilbert space. Let the function ϕ(t) generate the

function space ν0. Let the function ψ(t) and its compressed versions generate the spaces

W0, W1, W2, · · · .
Assume the following representation for f(t) is valid:

f(t) =
∞∑

k=−∞

ckϕ(t− k) +
∞∑

j=0

∞∑

k=−∞

dj,k2
j
2ψ(2jt− k) (5)

Consider the right-hand side of (5).

P3-a: Why is the first term a single series?

P3-b: Why is the second term (following the summation sign) a double series?

P3-c: Write down the expression for ck.

P3-d: Write down the expression for dj,k.

P3-e: Utilize Dirac’s bracket notation, and consider the results obtained in P3-c and P3-d. In the

light of your results deduce the expression for the resolution of identity from (5).

P3-f: Let j run from −∞ to ∞. Considering the result obtained in the previous step, deduce the

expression for the resolution of identity, when j varies from −∞ to ∞.

(6 marks)

P4-a: Given the general ‘‘low pass’’ filter coefficient h(n) write down the two-scale dilation

equation for the scaling function.

(2 marks)

P4-b: Given the general ‘‘high pass’’ filter coefficients g(n) write down the two-scale dilation

equation for the wavelet.

(2 marks)
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P5-a: Determine the filter coefficients h(n) for the triangle (piece-wise linear) scaling function.

(2 marks)

P5-b: The coefficients h(n), characterizing the triangle (piece-wise linear) scaling function,

constitute a ‘‘low pass’’ filter. Why?

(2 marks)

P5-c: Determine the filter coefficients g(n) for the triangle (piece-wise linear) wavelet.

(2 marks)

P5-d: The coefficients g(n), characterizing the triangle (piece-wise linear) wavelet, constitute a

‘‘high pass’’ filter. Why?

(2 marks)

P6: Given a fairly general function f(t). Apply Meyer’s orthogonalization technique to f(t).

(4 marks)

P7: Using the general dilation equation for the wavelet ψ(t), express the three-generations

compressed normalized wavelet

2
3
2ψ(23t−m)

in terms of 2
4
2ϕ(24t− n) summed over n.

(4 marks)

P8: The Mexican-hat wavelet Mh(t) can be obtained by taking the second derivative of the

negative Gaussian function:

G(t) = −1

2
e−t2

Sketch the Mexican-hat wavelet Mh(t).

(2 marks)
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P9: Ordinarily signal-analysis and signal -synthesis are carried out by using a system of

orthonormal basis (ONB) functions. However, if the orthonormality condition of the

analysis basis functions is violated, a system of dual basis functions is required for

accomplishing the synthesis of signals. The following problem illustrates the content of

this concept in terms of vectors.

Let |e1 > and |e2 > be unit normal vectors in the (x, y)−plane.

Let the vectors |f1 > and |f2 > be defined by the following equations:

|f1 > = 2|e1 > +1|e2 > (6a)

|f2 > = 2|e1 > +4|e2 > (6b)

Evidently, the vectors |f1 > and |f2 > are neither normal nor orthogonal.

Provide a sketch of the vectors |f1 > and |f2 >.

Construct the dual vectors < f̃1| and < f̃2| corresponding to |f1 > and |f2 >, respectively,

first graphically and then analytically.

Employ Dirac’s bracket notation.

Resolve the identity operator I in the plane (i.e., the 2× 2 unity matrix) in terms of the

ket-vectors |f1 > and |f2 > and their dual bra-vectors < f̃1| and < f̃2|.
(3 marks)
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P10: In the foregoing problem it was mentioned that customarily signal-analysis and

signal-synthesis are carried out by using a system of orthonormal basis (ONB) functions.

However, if the analysis functions are over-complete (they constitute a frame), a system of

over-complete functions (dual frames) is required for accomplishing the synthesis of

signals. The following problem illustrates the content of this concept in terms of vectors.

Let |e1 > and |e2 > denote unit normal vectors in the (x, y)−plane.

Let the ket vectors |f1 >, |f2 > and |f3 > be defined by the following equations:

|f1 > = |e1 > (7a)

|f2 > = |e1 > −|e2 > (7b)

|f3 > = |e1 > +|e2 > (7c)

The over-complete set of vectors |f1 >, |f2 > and |f3 > constitutes a frame.

The dual frame (bra vectors) < f̃1|, < f̃2| and < f̃3| are given as follows:

< f̃1| =
1

3
< e1| (8a)

< f̃2| =
1

3
< e1| −

1

2
< e2| (8b)

< f̃3| =
1

3
< e1|+

1

2
< e2| (8c)

Resolve the identity operator I in the plane (i.e., the 2× 2 unity matrix) in terms of the

frame vectors |f1 >, |f2 > and |f3 > and their dual frame vectors < f̃1|, < f̃2| and < f̃3|.
(7 marks)
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Fourier transform properties

Sequences x[n], y[n] Transforms X(ejω), Y (ejω) Property

ax[n] + by[n] aX(ejω) + bY (ejω) Linearity

x[n − nd] e−jωndX(ejω) Time shift

ejω0nx[n] X(ej(ω−ω0)) Frequency shift

x[−n] X(e−jω) Time reversal

nx[n] j
dX(ejω)

dω Frequency diff.

x[n] ∗ y[n] X(e−jω)Y (e−jω) Convolution

x[n]y[n] 1
2π

∫ π
−π

X(ejθ)Y (ej(ω−θ))dθ Modulation

Common Fourier transform pairs

Sequence Fourier transform

δ[n] 1

δ[n − n0] e−jωn0

1 (−∞ < n < ∞)
∑

∞

k=−∞
2πδ(ω + 2πk)

anu[n] (|a| < 1) 1
1−ae−jω

u[n] 1

1−e−jω +
∑

∞

k=−∞
πδ(ω + 2πk)

(n + 1)anu[n] (|a| < 1) 1

(1−ae−jω)2

sin(ωcn)
πn X(ejω) =

{

1 |ω| < ωc

0 ωc < |ω| ≤ π

x[n] =

{

1 0 ≤ n ≤ M

0 otherwise

sin[ω(M+1)/2]
sin(ω/2)

e−jωM/2

ejω0n ∑

∞

k=−∞
2πδ(ω − ω0 + 2πk)

Common z-transform pairs

Sequence Transform ROC

δ[n] 1 All z

u[n] 1
1−z−1 |z| > 1

−u[−n − 1] 1
1−z−1 |z| < 1

δ[n − m] z−m All z except 0 or ∞

anu[n] 1

1−az−1 |z| > |a|

−anu[−n − 1] 1

1−az−1 |z| < |a|

nanu[n] az−1

(1−az−1)2
|z| > |a|

−nanu[−n − 1] az−1

(1−az−1)2
|z| < |a|

{

an 0 ≤ n ≤ N − 1,

0 otherwise

1−aNz−N

1−az−1 |z| > 0

cos(ω0n)u[n]
1−cos(ω0)z−1

1−2 cos(ω0)z−1+z−2 |z| > 1

rn cos(ω0n)u[n]
1−r cos(ω0)z−1

1−2r cos(ω0)z−1+r2z−2 |z| > r


