EEE4001F EXAM
DIGITAL SIGNAL PROCESSING

University of Cape Town
Department of Electrical Engineering

June 2013
3 hours

Information
The exam is closed-book.
There are two parts to this exam.
Part A has six questions totalling 50 marks. You must answer all of them.
Part B has ten questions totalling 50 marks. You must answer all of them.

Parts A and B must be answered in different sets of exam books, which will be collected
separately.

A table of standard Fourier transform and z-transform pairs appears at the end of this
paper.

You have 3 hours.




PART A

Basic digital signal processing theory.

1. A sequence x[n] has a zero-phase DTFT X (/%) given below:
! X(e7*)

_I7T —71'/3 7T/3

Sketch the DTFT of the sequence 2z[n]e77"/3,
(5 marks)

2. Find the impulse response corresponding to the system function
722 — 4z
H(z) =
(2) 22—32-1
for each possible region of convergence. In each case comment on the causality and
stability properties of the system.
(10 marks)

Let z[n] be a discrete-time signal obtained by sampling the continuous signal z(t) at a

sampling rate f; = 1/7T Hz:
x[n] = z(nT).
Assume that no aliasing occurs. Describe by sketching a block diagram and providing a

clear explanation, how you would implement a discrete-time system with input z[n] and

output y[n] that delays x[n] by half a sample, so
yln] = ax(nT —T/2).

Hint: make use of upsamplers, downsamplers, and ideal filters.
(5 marks)




4. Consider the following discrete-time sequences:

x[n] = 26[n] + 36[n — 1] + d[n — 2] 4+ 56[n — 3]
y[n] = 0[n] — 26[n — 3.

(a) Write an expression for the 4-point DFT X [k] of x[n], and find the value X [1].

(b) Find the 4-point inverse DFT of X [k]W [, where X [k] is the 4-point DFT of =[n] and
Wy = e J 27”.

(c) Find the 4-point circular convolution of x[n] with y[n].

(d) Explain how you would calculate the result for part (c) using the fast Fourier transform

(FFT).
(e) How could you use the FFT to calculate the linear convolution of z[n] and y[n]?
(10 marks)
5. A discrete-time, causal, linear time-invariant filter H (z) has
six zeros located at: = etIm/8 5= MM/ L= 4]
and six poles located at: ~ z = 4j0.95, z = 0.95¢797/20_~ — (0.95¢+7117/20,

(a) Plot the pole-zero diagram of H(z) in the z-plane and provide its region of convergence.

(b) Sketch the magnitude response | H (e/%)| directly from the pole-zero plot, and indicate the
approximate gain at w = 7/2.

(c) What type of frequency-selective filter is H (¢/*)? Explain your answer.

(d) Answer the following questions, explaining your answers:
i. Is H(z) an IIR or FIR filter?
ii. Is H(z) a stable filter?
iii. Is h[n], the impulse response of the filter, a real function?
(10 marks)




6. Consider a causal LTI system with the system function

1—a 1zt
H() =

1—az™
where a is real.
(a) Write a difference equation that relates the input and the output of this system
(b) For what range of values of « is the system stable?
(c) For a = 1/2 plot the pole-zero diagram and show the ROC.
(d) Find the impulse response h[n] for this system for a = 1/2.

(e) Determine and plot the magnitude response of this system for a = 1/2. What type of

system is it?
(10 marks)




PART B

Wavelets and frames.

P1: Let the function f(¢) be defined by

sin(nmt) -1<t<1
f(t) = (1)
0 elsewhere
Pl-a: Calculate || f(t)]2, the Lo—norm of f(¢).
(2 marks)
P1-b: Let f(t) denote f(t) normalized; i.c., || f()||2 = 1. Write down the expression for
f@).
(2 marks)




P2: Consider the following complete set of orthonormal functions on the interval (—1, 1):

1 .
75 {cos (nxt) |n € N}, {sin (nnt)|n € N} (2)

Utilizing Dirac’s bracket notation, consider the following resolution of identity for the
Lo—space of functions with support (—1,1):

H—|7 >< \}_| + 7%}h}os(mrt) >< cos (nrt) |
+ Z | sin (n7t) >< sin (nwt) | 3)
neN

Let the function f(t) satisfy Dirichlet’s conditions on the interval (—1, 1), and be zero
outside this interval. In bracket notation write | f(¢) > for f(¢). Operate (3) from the left
onto the function | f(¢) > to obtain:

1
I|f(t) >= |\7 >< \/5|f(a:) >+ %\COS (nmt) >< cos (nmt) | f(t) >
+ Z |'sin (n7t) >< sin (n7t) |f(t) >
neN

“)

It is self-evident that certain groups of terms in (4) vanish for even- or odd-functions, and
thus the Eq. (4) simplifies for such functions.

P2-a: Simplify the expression on the right-hand side of the Eq. (4) for functions f(¢) satisfying
the condition f(—t) = f(¢) on the interval (—1, 1).
(2 marks)
P2-b: Deduce from your result obtained in P2-a the expression for the resolution of identity,
which characterizes the space of even functions with support (—1,1).
(2 marks)
P2-c: Simplify the expression on the right-hand side of the Eq. (4) for functions f(¢) satisfying
the condition f(—t) = — f(¢) on the interval (—1, 1).
(2 marks)
P2-d: Deduce from your result obtained in P2-¢ the expression for the resolution of identity,
which characterizes the space of odd functions with support (—1, 1).
(2 marks)




P3: Let the functions ¢(t) and v (¢) denote the scaling function and the wavelet for a

Multiresolution Analysis (MRA) in Hilbert space. Let the function ¢(t) generate the

function space 1. Let the function v (¢) and its compressed versions generate the spaces
Wo, Wi, Wa, - - -.

Assume the following representation for f(t) is valid:

oo

FO =3 apt—k)+> > djx252t—k) 5)

k=—0c0 71=0 k=—oc0

Consider the right-hand side of (5).

P3-a:
P3-b:
P3-c:
P3-d:
P3-e:

P3-f:

Why is the first term a single series?

Why is the second term (following the summation sign) a double series?
Write down the expression for cy.

Write down the expression for d; .

Utilize Dirac’s bracket notation, and consider the results obtained in P3-¢ and P3-d. In the
light of your results deduce the expression for the resolution of identity from (5).

Let j run from —oo to co. Considering the result obtained in the previous step, deduce the
expression for the resolution of identity, when j varies from —oo to oo.

(6 marks)

P4-a:

P4-b:

Given the general ‘‘low pass’’ filter coefficient h(n) write down the two-scale dilation
equation for the scaling function.

(2 marks)

Given the general ‘‘high pass’’ filter coefficients g(n) write down the two-scale dilation
equation for the wavelet.

(2 marks)




P5-a:

P5-b:

P5-c:

P5-d:

Determine the filter coefficients i (n) for the triangle (piece-wise linear) scaling function.

(2 marks)
The coefficients h(n), characterizing the triangle (piece-wise linear) scaling function,
constitute a ‘‘low pass’’ filter. Why?

(2 marks)
Determine the filter coefficients g(n) for the triangle (piece-wise linear) wavelet.

(2 marks)

The coefficients g(n), characterizing the triangle (piece-wise linear) wavelet, constitute a
“‘high pass’’ filter. Why?

(2 marks)

P6: Given a fairly general function f(¢). Apply Meyer’s orthogonalization technique to f(¢).

(4 marks)

P7: Using the general dilation equation for the wavelet 1(t), express the three-generations

compressed normalized wavelet

224(23t — m)

in terms of 22 ¢(2*t — n) summed over n.

(4 marks)

P8: The Mexican-hat wavelet M, (t) can be obtained by taking the second derivative of the

negative Gaussian function:

Sketch the Mexican-hat wavelet M, (t).

(2 marks)




P9: Ordinarily signal-analysis and signal -synthesis are carried out by using a system of
orthonormal basis (ONB) functions. However, if the orthonormality condition of the
analysis basis functions is violated, a system of dual basis functions is required for
accomplishing the synthesis of signals. The following problem illustrates the content of
this concept in terms of vectors.

Let |e; > and ez > be unit normal vectors in the (z, y)—plane.

Let the vectors |f; > and |f; > be defined by the following equations:

> = 2le; > +l]es > (62)
‘fg > = 2|e1 > —|—4‘82 > (6b)

Evidently, the vectors |f; > and |f> > are neither normal nor orthogonal.
Provide a sketch of the vectors |f; > and |f5 >.

Construct the dual vectors < Af:1| and < f2| corresponding to |f; > and |f; >, respectively,
first graphically and then analytically.

Employ Dirac’s bracket notation.

Resolve the identity operator I in the plane (i.e., the 2 X 2 unity matrix) in terms of the
ket-vectors |f; > and |f; > and their dual bra-vectors < f;| and < f5|.

(3 marks)




P10: In the foregoing problem it was mentioned that customarily signal-analysis and
signal-synthesis are carried out by using a system of orthonormal basis (ONB) functions.
However, if the analysis functions are over-complete (they constitute a frame), a system of
over-complete functions (dual frames) is required for accomplishing the synthesis of
signals. The following problem illustrates the content of this concept in terms of vectors.

Let |e; > and |es > denote unit normal vectors in the (x, y)—plane.

Let the ket vectors |f; >, |f2 > and |f3 > be defined by the following equations:

If1 > = le1> (7a)
‘fg > = |e1 > —‘82 > (7b)
|f3 > = |e1 > +|62 > (7¢)

The over-complete set of vectors |f; >, |[f2 > and |f5 > constitutes a frame.

The dual frame (bra vectors) < f |, < ?2| and < ?3| are given as follows:

~ 1

<f1| = §<61| (8a)
~ 1 1

<f2| = §<e1|—§<e2| (8b)
~ 1 1

<f3| = §<e1|+§<e2| (8¢c)

Resolve the identity operator I in the plane (i.e., the 2 X 2 unity matrix) in terms of the
frame vectors |f; >, |f2 > and |f3 > and their dual frame vectors < f;|, < f3] and < f3].

(7 marks)

10



Fourier transform properties

Sequences z[n], y[n] Transforms X (e7*), Y (%) Property
az[n] + by[n] aX(e?) + by (e9*) Linearity
z[n — ng) e7Iwnd X (ed*) Time shift
eI @0 x[n] X (ef(w—w0)) Frequency shift
x[—n] X (e %) Time reversal
nx[n] j #ij) Frequency diff.
z[n] * y[n] X(e7I)Y (e79%) Convolution
z[n]y[n] = [T X()Y (e =D)do Modulation

Common Fourier transform pairs

Fourier transform

Sequence
d[n] 1
d[n — no] e~Iwno
1 (—o0o < n < o0) D oo 2O (w + 27E)
a"uln] (Ja] <1) Taeie
u[n] ﬁ + 02 mo(w + 27k)
(n+ Damuln] (ol < 1) SR E—
Sin(o.;{;n) X(ej“) _ {1 |w| < we
T 0 we < |w| <7
2[n] = {1 0< n'S M sin[:i;r(ll(\ilu—}-zl))/2]e—jwM/2
0 otherwise
ewon D e oo 2 (w — wo + 27k)

Common z-transform pairs

Sequence Transform ROC

d[n] 1 All z
uln] 17i_1 |z[ > 1
—u[-n — 1] 1 2l < 1

d[n — m] z=™ All z except 0 or co
a™uln] —— 12 > lal
—a"u[-n — 1] 1 12l < lal
na"uln] Ty |2 > |al
—na"u[—n — 1] ﬁ |z] < |a
a™ 0<n<N-1 N_—N

{0 otl‘;rwis; 7 112";_1 = >0
cos(won)uln] 1721C;§?:;‘;2)_21_:z_2 |z] > 1
1—rcos(wg)z™ |Z‘ > r

r™ cos(won)uln]

1—2rcos(w())z71+r2z72




