EEE4114F: Digital Signal Processing

Class Test

7 March 2019

SOLUTIONS

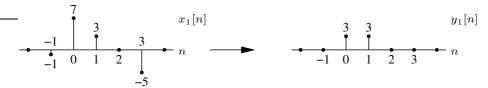
Name:		
Student number:		
	Information	

- The test is closed-book.
- \bullet This test has four questions, totalling 20 marks.
- Answer *all* the questions.
- You have 60 minutes.
- An information sheet is attached.

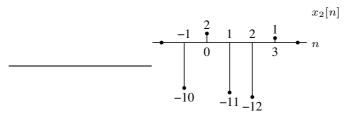
1. (5 marks) The output y[n] of a median filter is given by

$$y[n] = \text{med}(x[n-1], x[n], x[n+1]).$$

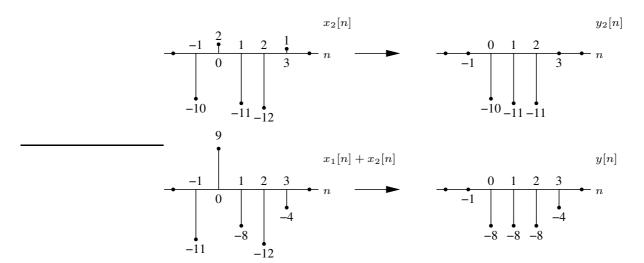
Here the median function, med (), lists the 3 samples in descending order and selects the value in the middle of the list. For example, the input $x_1[n]$ generates the output $y_1[n]$ below:



- (a) Is the system causal? Why?
- (b) Is the system stable? Why?
- (c) Comment on whether the above median filter is linear. Justify your comments and construct a simple relevant example to illustrate your conclusion. For this purpose you may want to use the example pair given above and the input sequence below:



- (a) To calculate the output at say n = 10 we need to know the inputs x[9], x[10], and x[11]. Since this last input is in the future the system is not causal.
- (b) The output at any instant is always generated by taking the value of a selected input sample, so every value in y[n] must occur somewhere in x[n]. Thus if $|x[n]| \leq B_x$ for some B_x then we must also have $|y[n]| \leq B_x$. Since a bounded input always produces a bounded output (with the same bound), the system is stable.
- (c) The following input-output pairs can be established:



Since we observe that $y[n] \neq y_1[n] + y_2[n]$ the system is not additive, and therefore not linear.

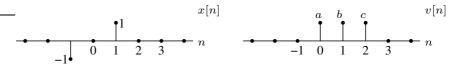
2. (5 marks) Let x[n] an v[n] be defined as follows:

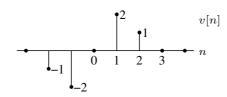
$$x[n] = \delta[n-1] - \delta[n+1]$$
 and $v[n] = a\delta[n] + b\delta[n-1] + c\delta[n-2].$

Suppose now that y[n] = v[n] * x[n] gives

$$y[n] = -\delta[n+1] - 2\delta[n] + 2\delta[n-2] + \delta[n-3].$$

- (a) Sketch the signals involved.
- (b) Specify values for a, b, and c.
- (a) Plots of the signals are as follows:





(b) It might be easier to solve via graphical convolution, but the answer can also be found algebraically:

$$\begin{split} y[n] &= x[n] * v[n] = (\delta[n-1] - \delta[n+1]) * (a\delta[n] + b\delta[n-1] + c\delta[n-2]) \\ &= a\delta[n-1] + b\delta[n-2] + c\delta[n-3] - a\delta[n+1] - b\delta[n] - c\delta[n-1] \\ &= -a\delta[n+1] - b\delta[n] + (a-c)\delta[n-1] + b\delta[n-2] + c\delta[n-3]. \end{split}$$

By inspection we observe that a = 1, b = 2, and c = 1.

3. (5 marks) Consider the discrete LTI system represented by

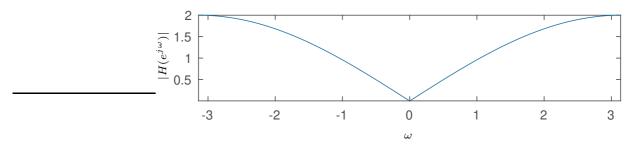
$$y[n] = x[n] - x[n-1]$$

where x[n] and y[n] are the input and output respectively.

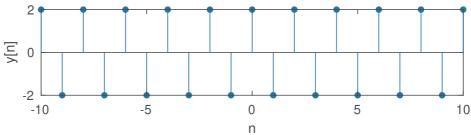
- (a) Determine and plot the impulse response h[n]. Is the system stable?
- (b) Determine and plot the step response corresponding to x[n] = u[n].
- (c) Find $H(e^{j\omega})$ and plot its magnitude.
- (d) Determine and plot the response to the input $x[n] = (-1)^n$.
- (a) The impulse response h[n] is the output when the input is $x[n] = \delta[n]$, so $h[n] = \delta[n] \delta[n-1]$. Since $\sum_{n=-\infty}^{\infty} |h[n]| = 2 < \infty$ the system is stable.
- (b) When the input is x[n] = u[n] then the output will be $y[n] = u[n] u[n-1] = \delta[n]$.
- (c) The frequency response is

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} (\delta[n] - \delta[n-1]) e^{-j\omega n} = 1 - e^{-j\omega} = e^{-j\omega/2} (e^{j\omega/2} - e^{-j\omega/2})$$
$$= 2je^{-j\omega/2} \sin(\omega/2),$$

so $|H(e^{j\omega})| = 2|\sin(\omega/2)|$. Plot as follows:



(d) The response to $x[n] = (-1)^n = e^{j\pi n}$ will be $y[n] = H(e^{j\pi})e^{j\pi n} = 2e^{j\pi n} = 2(-1)^n$, as follows:



4. (5 marks) A LTI system has a step response of

$$g[n] = n\left(\frac{1}{2}\right)^n u[n].$$

In other words, when the input is x[n] = u[n] then the output is y[n] = g[n] above.

- (a) Is the system causal? Why?
- (b) Find the Fourier transform of g[n].
- (c) Find an expression for its impulse response. You may want to use the fact that $u[n] u[n-1] = \delta[n]$.
- (a) The system is causal because the impulse response is right-sided.
- (b) By applying the frequency differentiation property to the pair

$$(1/2)^n u[n] \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad (1 - 1/2e^{-j\omega})^{-1}$$

we find

$$G(e^{j\omega}) = j\frac{d}{d\omega}(1 - 1/2e^{-j\omega})^{-1} = -j(1 - 1/2e^{-j\omega})^{-2}1/2je^{j\omega}$$
$$= \frac{1/2e^{j\omega}}{(1 - 1/2e^{-j\omega})^2}.$$

(c) We are given that $u[n] \longrightarrow g[n]$ is a valid input-output pair. From time invariance $u[n-1] \longrightarrow g[n-1]$ is also a valid pair. By linearity

$$u[n] - u[n-1] \longrightarrow g[n] - g[n-1]$$

is valid, so

$$\delta[n] \longrightarrow g[n] - g[n-1] = n\left(\frac{1}{2}\right)^n u[n] - (n-1)\left(\frac{1}{2}\right)^{n-1} u[n-1]$$

gives the impulse response.

Discrete-time Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n-n_d]$	$e^{-j\omega n}dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	Modulation

${\bf Common\ discrete-time\ Fourier\ transform\ pairs}$

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n-n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_C n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} \frac{1}{(1-ae^{-j\omega})^2} \\ 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$ $e^{j\omega_0 n}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Z-transform properties

Sequences $x[n], y[n]$	Transforms $X(z)$, $Y(z)$	ROC	Property
ax[n] + by[n]	aX(z) + bY(z)	ROC contains $R_x \cap R_y$	Linearity
$x[n-n_d]$	$z^{-n}dX(z)$	$ROC = R_x$	Time shift
$z_0^n x[n]$	$X(z/z_0)$	$ROC = z_0 R_x$	Frequency scale
$x^*[-n]$	$X^*(1/z^*)$	$ROC = \frac{1}{R_x}$	Time reversal
nx[n]	$-z \frac{dX(z)}{dz}$	$ROC = R_x$	Frequency diff.
x[n] * y[n]	X(z)Y(z)	ROC contains $R_x \cap R_y$	Convolution
$x^*[n]$	$X^*(z^*)$	$ROC = R_x$	Conjugation

Common z-transform pairs

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n-1]	$\frac{1}{1-z-1}$	z < 1
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n}u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$-a^{n}u[-n-1]$	$\frac{\frac{1}{1}}{1-az^{-1}}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r