EEE4114F: Digital Signal Processing

Class Test
19 March 2017

SOLUTIONS

Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.
- An information sheet is attached.
\qquad -

1. (5 marks) The input signal

$$
x[n]= \begin{cases}1 & 0 \leq n \leq 9 \\ 0 & \text { otherwise }\end{cases}
$$

is applied to a system with impulse response

$$
h[n]=(1 / 3)^{n} u[n] .
$$

Find and plot the values of the output signal $y[n]$ over the range $n=-4$ to $n=4$.

Since the input can be written as $x[n]=u[n]-u[n-10]$, the output will be

$$
y[n]=h[n] * x[n]=h[n] *(u[n]-u[n-10])=g[n]-g[n-10]
$$

with $g[n]=h[n] * u[n]$.
Now

$$
g[n]=\sum_{k=-\infty}^{\infty} h[k] u[n-k]=\sum_{k=-\infty}^{n} h[k]
$$

where the sum is truncated because $u[n-k]=0$ for $n-k<0$, or $k>n$. Since $h[k]=0$ for $k<0$ the output $g[n]=0$ for $n<0$. For $n>0$ we have

$$
g[n]=\sum_{k=-\infty}^{n}(1 / 3)^{k}=\frac{1-(1 / 3)^{n-1}}{1-1 / 3}
$$

The full step response is therefore

$$
g[n]=\frac{3}{2}\left(1-(1 / 3)^{n-1}\right) u[n]
$$

Since $g[n-10]=0$ for $n<10$ it has no effect on the output values over the range specified, so it is easy to find and plot the required values of $y[n]$.
2. (5 marks) A sequence $x[n]$ has a zero-phase DTFT $X\left(e^{j \omega}\right)$ given below:

Sketch the magnitude and phase of the DTFT of the following sequences:
(a) $\left.y_{1} n\right]=x[n-1]$.
(b) $y_{2}[n]=x^{*}[-n]$.
(a) The transform satisfies $Y_{1}\left(e^{j \omega}\right)=e^{-j \omega} X\left(e^{j \omega}\right)$. Since $X\left(e^{j \omega}\right)$ is zero phase we have $\left|Y_{1}\left(e^{j \omega}\right)\right|=X\left(e^{j \omega}\right)$ and $\angle Y_{1}\left(e^{j \omega}\right)=-\omega$, plotted below.
(b) The transform is as follows:

$$
\begin{aligned}
Y_{2}\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x^{*}[-n] e^{-j \omega n}=\sum_{m=-\infty}^{\infty} x^{*}[m] e^{j \omega m} \\
& =\left(\sum_{m=-\infty}^{\infty} x[m] e^{-j \omega m}\right)^{*}=X^{*}\left(e^{j \omega}\right)=X\left(e^{j \omega}\right)
\end{aligned}
$$

where the last step is true because $X\left(e^{j \omega}\right)$ is real.

3. (5 marks) Consider the discrete LTI system represented by

$$
y[n]=x[n]-x[n-1]
$$

where $x[n]$ and $y[n]$ are the input and output respectively.
(a) Determine and plot the impulse response $h[n]$. Is the system stable?
(b) Determine and plot the step response corresponding to $x[n]=u[n]$.
(c) Find $H\left(e^{j \omega}\right)$ and plot its magnitude.
(d) Determine and plot the response to the input $x[n]=(-1)^{n}$.
(a) The impulse response $h[n]$ is the output when the input is $x[n]=\delta[n]$, so $h[n]=\delta[n]-\delta[n-1]$. Since $\sum_{n=-\infty}^{\infty}|h[n]|=2<\infty$ the system is stable.
(b) When the input is $x[n]=u[n]$ then the output will be $y[n]=u[n]-u[n-1]=\delta[n]$.
(c) The frequency response is

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty}(\delta[n]-\delta[n-1]) e^{-j \omega n}=1-e^{-j \omega}=e^{-j \omega / 2}\left(e^{j \omega / 2}-e^{-j \omega / 2}\right) \\
& =2 j e^{-j \omega / 2} \sin (\omega / 2)
\end{aligned}
$$

$$
\text { so }\left|H\left(e^{j \omega}\right)\right|=2|\sin (\omega / 2)|
$$

(d) The response to $x[n]=(-1)^{n}=e^{j \pi n}$ will be $y[n]=H\left(e^{j \pi}\right) e^{j \pi n}=2 e^{j \pi n}=2(-1)^{n}$.
4. (5 marks) A system has impulse response $h[n]=(1 / 2)^{n} u[n]$. Determine the input $x[n]$ to the system if the output is given by $y[n]=2 \delta[n-4]$. Explicitly state regions of convergence for any Z-transforms.

The system function is

$$
H(z)=\frac{1}{1-1 / 2 z^{-1}}
$$

with ROC $|z|>1 / 2$. The output is

$$
Y(z)=2 z^{-4}
$$

for all z. The input can then be found to be

$$
X(z)=\frac{Y(z)}{H(z)}=2 z^{-4}\left(1-1 / 2 z^{-1}\right)=2 z^{-4}-z^{-5}
$$

with ROC the entire z -plane, so the input is

$$
x[n]=2 \delta[n-4]-\delta[n-5] .
$$

Discrete-time Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$	Property
$a x[n]+b y[n]$	$a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$	Linearity
$x\left[n-n_{d}\right]$	$e^{-j \omega n_{d X}\left(e^{j \omega}\right)}$	Time shift
$e^{j \omega_{0}{ }^{n} x[n]}$	$X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$	Frequency shift
$x[-n]$	$x\left(e^{-j \omega}\right)$	Time reversal
$n x[n]$	${ }^{\text {a }} \frac{d X\left(e^{j \omega}\right)}{d \omega}$	Frequency diff.
$x[n] * y[n]$	$X\left(e^{-j \omega}\right)_{Y\left(e^{-j \omega}\right)}$	Convolution
$x[n] y[n]$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi}{ }^{\text {a }}$ (e $\left.e^{j \theta}\right) Y\left(e^{j}(\omega-\theta)\right) d \theta$	Modulation

Common discrete-time Fourier transform pairs

Z-transform properties

Sequences $x[n], y[n]$	Transforms $X(z), Y(z)$	ROC	Property
$a x[n]+b y[n]$	${ }^{\text {a }} \times(z)+b Y(z)$	ROC contains $R_{x} \cap R_{y}$	Linearity
$x\left[n-n_{d}\right]$	$z^{-n_{d X}(z)}$	$\mathrm{ROC}=R_{x}$	Time shift
$z_{0}^{n} x[n]$	$X\left(z / z_{0}\right)$	ROC $=\left\|z_{0}\right\| R_{x}$	Frequency scale
$x^{*}[-n]$	$x^{*}\left(1 / z^{*}\right)$	ROC $=\frac{1}{R_{x}}$	Time reversal
$n x[n]$	$-z \frac{d X(z)}{d z}$	$\mathrm{ROC}=R_{x}$	Frequency diff.
$x[n] * y[n]$	$X(z) Y(z)$	ROC contains $R_{x} \cap R_{y}$	Convolution
$x^{*}[n]$	$\chi^{*}\left(z^{*}\right)$	$\mathrm{ROC}=R_{x}$	Conjugation

Common z-transform pairs

Sequence	Transform	ROC
${ }^{\delta[n]}$	1	All z
$u[n]$	1 -	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z-1}$	$\|z\|<1$
$\delta[n-m]$	z^{-m}	All z except 0 or ∞
$a^{n} u[n]$	$\frac{1}{1-a z-1}$	$\|z\|>\|a\|$
$-a^{n} u[-n-1]$	$\frac{1}{1-a z-1}$	$\|z\|<\|a\|$
${ }_{n a^{n} u[n]}$		$\|z\|>\|a\|$
$-n a^{n} u[-n-1]$	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$	$\|z\|<\|a\|$
$\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$	$\frac{1-a^{N}-N}{1-a z-1}$	$\|z\|>0$
${ }^{\cos \left(\omega_{0} n\right) u[n]}$	$\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$	$\|z\|>1$
$r^{n} \cos \left(\omega_{0} n\right) u[n]$	$\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$	$\|z\|>\|r\|$

