## EEE4114F: Digital Signal Processing

Class Test
19 March 2017

## Name:

Student number:

Information

- The test is closed-book.
- This test has four questions, totalling 20 marks.
- Answer all the questions.
- You have 45 minutes.
- An information sheet is attached.

2. ( 5 marks) A sequence $x[n]$ has a zero-phase DTFT $X\left(e^{j \omega}\right)$ given below:


Sketch the magnitude and phase of the DTFT of the following sequences:
(a) $\left.y_{1} n\right]=x[n-1]$.
(b) $y_{2}[n]=x^{*}[-n]$.
3. ( 5 marks) Consider the discrete LTI system represented by

$$
y[n]=x[n]-x[n-1]
$$

where $x[n]$ and $y[n]$ are the input and output respectively.
(a) Determine and plot the impulse response $h[n]$. Is the system stable?
(b) Determine and plot the step response corresponding to $x[n]=u[n]$.
(c) Find $H\left(e^{j \omega}\right)$ and plot its magnitude.
(d) Determine and plot the response to the input $x[n]=(-1)^{n}$.
4. (5 marks) A system has impulse response $h[n]=(1 / 2)^{n} u[n]$. Determine the input $x[n]$ to the system if the output is given by $y[n]=2 \delta[n-4]$. Explicitly state regions of convergence for any Z-transforms.

Discrete-time Fourier transform properties

| Sequences $x[n], y[n]$ | Transforms $X\left(e^{j \omega}\right), Y\left(e^{j \omega}\right)$ | Property |
| :---: | :---: | :---: |
| $a x[n]+b y[n]$ | $a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$ | Linearity |
| $x\left[n-n_{d}\right]$ | $e^{-j \omega n_{d X}\left(e^{j \omega}\right)}$ | Time shift |
| $e^{j \omega_{0} n_{x[n]}}$ | $x\left(e^{j\left(\omega-\omega_{0}\right)}\right.$ ) | Frequency shift |
| $x[-n]$ | $x\left(e^{-j \omega}\right)$ | Time reversal |
| ${ }_{n \times[n]}$ | ${ }_{j} \frac{d X\left(e^{j \omega}\right)}{d \omega}$ | Frequency diff. |
| $x[n] * y[n]$ | ${ }^{\boldsymbol{x}\left(e^{-j \omega}{ }^{\text {d }} \text { ) }\right.}$ ( $\left.e^{-j \omega}\right)$ | Convolution |
| $x[n] y[n]$ | $\frac{1}{2 \pi} \int_{-\pi}^{\pi}{ }^{x}\left(e^{j \theta}\right) Y\left(e^{j(\omega-\theta)}\right) d \theta$ | Modulation |

## Common discrete-time Fourier transform pairs

| Sequence | Fourier transform |
| :---: | :---: |
| $\delta[n]$ | 1 |
| $\delta\left[n-n_{0}\right]$ | $e^{-j \omega n_{0}}$ |
| $1(-\infty<n<\infty)$ | $\sum_{k=-\infty}^{\infty} 2 \pi \delta(\omega+2 \pi k)$ |
| $a^{n} u[n] \quad(\|a\|<1)$ | $\frac{1}{1-a e^{-j \omega}}$ |
| $u[n]$ | $\frac{1}{1-e^{-j \omega}}+\sum_{k=-\infty}^{\infty} \pi \delta(\omega+2 \pi k)$ |
| $(n+1) a^{n} u[n] \quad(\|a\|<1)$ | $\frac{1}{\left(1-a e^{-j \omega}\right)^{2}}$ |
| $\frac{\sin \left(\omega_{c} n\right)}{\pi n}$ | $x\left(e^{j \omega}\right)= \begin{cases}1 & \|\omega\|<\omega_{c} \\ 0 & \omega_{c}<\|\|\omega\| \leq \pi\end{cases}$ |
| $x[n]= \begin{cases}1 & 0 \leq n \leq M \\ 0 & \text { otherwise }\end{cases}$ | $\frac{\sin [\omega(M+1) / 2]}{\sin (\omega / 2)} e^{-j \omega M / 2}$ |
| $e^{j \omega_{0} n}$ | $\sum_{k=-\infty}^{\infty} 2 \pi \delta\left(\omega-\omega_{0}+2 \pi k\right)$ |

## Z-transform propertie

| Sequences $x[n], y[n]$ | Transforms $X(z), Y(z)$ | ROC | Property |
| :---: | :---: | :---: | :---: |
| $a x[n]+b y[n]$ | ${ }^{\text {a }} \times(z)+b Y(z)$ | ROC contains $R_{x} \cap R_{y}$ | Linearity |
| $x\left[n-n_{d}\right]$ | $z^{-n_{d X}(z)}$ | $\mathrm{ROC}=R_{x}$ | Time shift |
| $z_{0}^{n} x[n]$ | $X\left(z / z_{0}\right)$ | ROC $=\left\|z_{0}\right\| R_{x}$ | Frequency scale |
| $x^{*}[-n]$ | $x^{*}\left(1 / z^{*}\right)$ | ROC $=\frac{1}{R_{x}}$ | Time reversal |
| $n x[n]$ | $-z \frac{d X(z)}{d z}$ | $\mathrm{ROC}=R_{x}$ | Frequency diff. |
| $x[n] * y[n]$ | $X(z) Y(z)$ | ROC contains $R_{x} \cap R_{y}$ | Convolution |
| $x^{*}[n]$ | $\chi^{*}\left(z^{*}\right)$ | $\mathrm{ROC}=R_{x}$ | Conjugation |

Common z-transform pairs

| Sequence | Transform | ROC |
| :---: | :---: | :---: |
| ${ }^{\delta[n]}$ | 1 | All z |
| $u[n]$ | $\frac{1}{1-z^{-1}}$ | $\|z\|>1$ |
| $-u[-n-1]$ | $\frac{1}{1-z-1}$ | $\|z\|<1$ |
| $\delta[n-m]$ | $z^{-m}$ | All $z$ except 0 or $\infty$ |
| $a^{n} u[n]$ | $\frac{1}{1-a z-1}$ | $\|z\|>\|a\|$ |
| $-a^{n} u[-n-1]$ | $\frac{1-a z^{-1}}{1-a z z^{-1}}$ | $\|z\|<\|a\|$ |
| $n a^{n} u[n]$ | $\frac{a z^{-1}}{(1-a z-1)^{2}}$ | $\|z\|>\|a\|$ |
| $-n a^{n} u[-n-1]$ | $\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$ | $\|z\|<\|a\|$ |
| $\begin{cases}a^{n} & 0 \leq n \leq N-1, \\ 0 & \text { otherwise }\end{cases}$ | $\frac{1-a^{N}-N}{1-a z-1}$ | $\|z\|>0$ |
| $\cdots \cos \left(\omega_{0} n\right) u[n]$ | $\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0}\right) z^{-1}+z^{-2}}$ | $\|z\|>$ |
| $r^{n} \cos \left(\omega_{0} n\right) u[n]$ | $\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$ | $\|z\|>\|r\|$ |

