EEE4114F: Digital Signal Processing

Class Test

19 March 2017

Name:

Student number:

1. (5 marks) The input signal

 $x[n] = \begin{cases} 1 & 0 \le n \le 9\\ 0 & \text{otherwise} \end{cases}$

is applied to a system with impulse response

$$h[n]=(1/3)^n u[n].$$

Find and plot the values of the output signal y[n] over the range n = -4 to n = 4.

Information

- The test is closed-book.
- This test has *four* questions, totalling 20 marks.
- Answer *all* the questions.
- You have 45 minutes.
- An information sheet is attached.

2. (5 marks) A sequence x[n] has a zero-phase DTFT $X(e^{j\omega})$ given below:

Sketch the magnitude and phase of the DTFT of the following sequences:

(a) $y_1n] = x[n-1].$ (b) $y_2[n] = x^*[-n].$ 3. (5 marks) Consider the discrete LTI system represented by

$$y[n] = x[n] - x[n-1]$$

where x[n] and y[n] are the input and output respectively.

- (a) Determine and plot the impulse response h[n]. Is the system stable?
- (b) Determine and plot the step response corresponding to x[n] = u[n].
- (c) Find $H(e^{j\omega})$ and plot its magnitude.
- (d) Determine and plot the response to the input $x[n] = (-1)^n$.

4. (5 marks) A system has impulse response $h[n] = (1/2)^n u[n]$. Determine the input x[n] to the system if the output is given by $y[n] = 2\delta[n-4]$. Explicitly state regions of convergence for any Z-transforms.

Discrete-time Fourier transform properties

Sequences $x[n], y[n]$	Transforms $X(e^{j\omega}), Y(e^{j\omega})$	Property
ax[n] + by[n]	$aX(e^{j\omega}) + bY(e^{j\omega})$	Linearity
$x[n - n_d]$	$e^{-j\omega n} dX(e^{j\omega})$	Time shift
$e^{j\omega_0 n} x[n]$	$X(e^{j(\omega-\omega_0)})$	Frequency shift
x[-n]	$X(e^{-j\omega})$	Time reversal
nx[n]	$j \frac{dX(e^{j\omega})}{d\omega}$	Frequency diff.
x[n] * y[n]	$X(e^{-j\omega})Y(e^{-j\omega})$	Convolution
x[n]y[n]	$\frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$	Modulation

Common discrete-time Fourier transform pairs

Sequence	Fourier transform	
$\delta[n]$	1	
$\delta[n - n_0]$	$e^{-j\omega n_0}$	
$1 (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$a^n u[n] (a < 1)$	$\frac{1}{1-ae^{-j\omega}}$	
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$(n+1)a^n u[n] (a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$	
$\frac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$	
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$	

Z-transform properties

Sequences $x[n], y[n]$	Transforms $X(z)$, $Y(z)$	ROC	Property
ax[n] + by[n]	aX(z) + bY(z)	ROC contains $R_x \cap R_y$	Linearity
$x[n - n_d]$	$z^{-n}dX(z)$	$ROC = R_x$	Time shift
$z_0^n x[n]$	$X(z/z_0)$	$ROC = z_0 R_x$	Frequency scale
$x^{*}[-n]$	$X^{*}(1/z^{*})$	$ROC = \frac{1}{B_m}$	Time reversal
nx[n]	$-z \frac{dX(z)}{dz}$	$ROC = R_x$	Frequency diff.
x[n] * y[n]	X(z)Y(z)	ROC contains $R_x \cap R_y$	Convolution
$x^*[n]$	$X^{*}(z^{*})$	$ROC = R_x$	Conjugation

Common z-transform pairs

_

Sequence	Transform	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
-u[-n - 1]	$\frac{1}{1-z^{-1}}$	z < 1
$\delta[n - m]$	z^{-m}	All z except 0 or ∞
$a^n u[n]$	$\frac{1}{1-az-1}$	z > a
$-a^{n}u[-n-1]$	$\frac{1}{1-az-1}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
$\begin{cases} a^n & 0 \le n \le N - 1, \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^{N}z^{-N}}{1-az^{-1}}$	z > 0
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
$r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r \cos(\omega_0) z^{-1}}{1 - 2r \cos(\omega_0) z^{-1} + r^2 z^{-2}}$	z > r