
DSP Project

Spectrum estimation and texture modeling

This document provides an outline for a Matlab project to be completed by the end of the course.
You are expected to investigate, in detail, methods related to solving the problem. There is a
design element to the project, and a quantitative evaluation of the performance of the proposed
methods must be performed and presented. You are to write up a comprehensive report (of no
more than 8 pages) describing your method and results. You should ideally work in groups of two,
although you may work alone if you really want to. If you wish to propose a project of your own,
then please come and talk to me.

1 The objective

The aim of this project is to investigate a class of parametric spectrum estimation techniques. The
method will use an all-pole filter driven by white noise to generate samples from the model, with
the parameters being estimated using linear prediction on the inverse model. Because the model
extends quite easily to 2D (or more), the spectrum estimates can be used to characterise textures
in a generative manner.

2 Basic Theory

The starting point is a time-recursive model of the form

x[n] = a1x[n− 1] + a2x[n− 2] + · · ·+ apx[n− p] + w[n].

The signal x[n] represents the observed data, and w[n] is assumed to be Gaussian white noise. The
model therefore states that the sample x[n] at time n can be generated by a linear combination
of previous inputs, plus an additive innovation (random component) w[n]. The weights a1, . . . , ap
are parameters, and different choices lead to a different model. This is called an autoregressive
(AR) process.

We can consider x[n] to be the output of a linear time-invariant filter driven by the input sequence
w[n]. This is apparent in the transform domain:

X(z) =

p
∑

k=1

akz
−kX(z) +W (z) =⇒ H(z) =

X(z)

W (z)
=

1

1−
∑p

k=1
akz−k

.

Since the denominator is a polynomial in z−1, the input-output relation is in the form of an all-pole
filter.

If w[n] is white noise, then its power spectrum is flat and we can assume |W (ejω)|2 = σ2. For any
set of values a1, . . . , ap appropriately chosen for the data, we have

X(ejω) = H(ejω)W (ejω) = σH(ejω) =
σ

1−
∑p

k=1
ake−jωk

.

The parameters ak and σ2 therefore provide a parametric description of the spectrum X(ejω), and
estimating their values from data x[n] constitutes parametric spectrum estimation.

It turns out that it’s not difficult to estimate the parameter values ak given a sample of data.
Suppose as a simple example that p = 2 and the observed data is x[0], x[1], x[2], x[3], x[4]. If the

1

model is accurate, then we should have

x[2] ≈ a1x[1] + a0x[0]

x[3] ≈ a1x[2] + a0x[1]

x[4] ≈ a1x[3] + a0x[2].

In general we should have x[n] ≈ a1x[n−1]+a2x[n−2] when the parameters a1 and a2 are chosen
correctly.

Define x̂[n] = a1x[n − 1] + a2x[n − 2] to be the predicted value of x[n] using previous samples
according to the model. The argument just presented states that we should have x[n] ≈ x̂[n].
However, from the model w[n] = x[n]− x̂[n], so the innovation sequence w[n] corresponds directly
to the prediction error. The model will be good if the overall error over the entire set of training
equations is small. For the example above we can measure how good the model is by finding
E =

∑4

n=2
(w[n])2: a good model will have a small total error, while for a bad model E will be

large.

The set of errors can be written as a vector, leading to a system of equations:

w =





w[2]
w[3]
w[4]



 =





x[2]
x[3]
x[4]



−





x[1] x[0]
x[2] x[1]
x[3] x[2]





(

a1
a2

)

,

which is in the form w = x − Xa. The error defined earlier is E = wTw. The objective is to
choose a to minimise E, which ideally would yield w = 0. The solution can be found by least
squares1:

w ≈ 0 =⇒ Xa ≈ x =⇒ XTXa ≈ XTx

=⇒ a ≈ (XTX)−1XTx.

This is easily calculated using a high-level computer programming language like Matlab — we
just need to form the vector x and the matrix X from training samples, and solve using the
pseudo-inverse solution above.

In general, given observations x[0], . . . , x[N] and a model of order p, the errors are given by

w =











w[p]
w[p+ 1]

...
w[N]











=











x[p]
x[p+ 1]

...
x[N]











−











x[p− 1] x[p− 2] · · · x[0]
x[p] x[p− 1] · · · x[1]
...

...
. . .

...
x[N − 1] x[N − 2] · · · x[N − p]





















a1
a2
...
ap











,

This can be solved in exactly the same way as shown in the previous case.

Once ak are specified, the filter H(z) is completely defined. Driving this filter with a white noise
input sequence will create an output that has similar spectral properties to that of the signal used
to estimate the parameters. It is this characteristic that makes the model generative.

The methods in the previous section extend to 2D with an appropriate definition of the lags to
use. Suppose in 2D the model order is (p, q) then we have

x(n1, n2) =





a(p, q)x(n1 − p, n2 − q) + · · · + a(0, q)x(n1, n2 − q)
+ · · · +

a(p, 0)x(n1 − p, n2) + · · · (+0x(n1, n2))



+ w(n1, n2)

1Formally we need to minimise E = w
T
w subject to w = x−Xa. We can write

E = (x−Xa)T (x−Xa) = x
T
x− 2xT

Xa+ a
T
X

T
Xa.

The minimum occurs when the derivative with respect to a is zero:

dE

da
= −2XT

x+ 2XT
Xa = 0,

or a = (XTX)−1XTx.

2

We can again take multiple training instances to form w = y−Xa, where each row of X represents
a set of ”past” samples predicting the corresponding value in y.

3 Approach

The aim here is for you to investigate and explore around the concepts described in the previous
section. There are no specific objectives — you can take your analysis in any direction you choose,
either concentrating on 1D or extending to higher dimensions, or considering how the ideas could
be used in an application. To get you started there is demonstration code and some sample images
available at

http://www.dip.ee.uct.ac.za/∼nicolls/eee4001f/projects/project08.

The first script, project08 runme.m, contains examples of 1D parametric AR spectrum estimation
using a single row of the first frame of a video of moving ocean waves as a sample signal. In practice
one wouldn’t usually process images in this way, since you would be ignoring all of the interesting
image structure that occurs from the samples being ordered in the vertical direction (and in the
temporal direction for video). In any event, the pixel values in the row are distinctly correlated,
and treating them under a typical white noise assumption is probably inappropriate. Once the
model is estimated, the code shows how to generate (or draw) samples from the same model or
distribution.

The second script, project08 runme2.m, essentially does the same as project08 runme.m, but in
a 2D setting. Ordering of parameters and corresponding observations is really the only complicated
part of this extension. The methods are demonstrated on texture images that are a subset of the
Brodatz album2.

The third script, project08 runme3.m, gives some ideas of how the spectrum estimation process
can be used to classify textures into different classes. A number of texture images are considered,
and a 1D model of the chosen order is fitted to each row. A scatterplot on the filter coefficients
that represent the texture indicates that there is some structure that could be useful for the task
of classification. Note that the classification system hasn’t actually been built — the results just
show that the filter parameters could be considered reasonable features.

The examples raise a number of questions, any of which might form the basis for your exploration:

1. In all cases the model order, or the number of lags to use, has to be fixed in advance. A model
with more parameters has more ”capacity” to represent the actual underlying spectrum, but
overfitting may occur if the number of parameters is too high. You could investigate around
this factor using different types of data. (Some is provided with this project, but there’s
plenty on the web.)

2. The generative aspect of the model lets you sample instances from it, to determine how
similar the model is to the data it was estimated from. This is particularly interesting
for 2D image texture analysis, where the visual appearance of the synthesized texture is
meaningful to us. There are clearly examples of things we would call textures that don’t
conform to the model. There are many 2D texture databases available on the web if you
need more samples.

3. The first example uses a row of data from a video image of ocean waves, and arises from a
project where we’re trying to develop visual trackers for maritime surveillance. The extension
to 2D has been presented, but the extension to a full 3D spatio-temporal AR model is
useful and interesting — particularly when you draw samples from it. This forms part of an
interesting research endeavour that goes by the name ”dynamic textures”, which involves the

2http://www.ux.uis.no/∼tranden/brodatz.html.

3

analysis and synthesis of textures through time. If you need more examples of spatiotemporal
textures, try the DynTex database3. Matlab’s im2col function unfortunately doesn’t extend
to more than two dimensions, but the function im2colp in the project directory provides
this functionality.

4. For the classification problem, we would expect a 2D model of the texture to be much more
discriminatory than a 1D row from it. Extending the model to the higher dimension is easy,
although plotting feature values on a scatter plot will no longer be easy (or possible) — some
kind of distance measure with a nearest neighbour classifier may be required. For testing
performance it would be appropriate to split a single input image into blocks, using some
for training and some for classifier testing.

4 Requirements

As always, you will have to formulate and design experiments that demonstrate the point you
want to make, and generate a comprehensive set of results to assess your findings. This is always
difficult: you need to develop performance measures that are effective at quantifying how well the
system is working. Just saying ”It looks right” does not suffice. Exploring around the different
choices of parameter settings is also usually appropriate.

Any interesting findings or observations regarding the structure of the problem or uses in practical
applications will be rewarded during the assessment.

The report should not exceed 8 pages. While it can discuss the software structure or design it
is not appropriate to include source code: the project is to assess the method, not your specific
implementation of it (although that might deserve a mention, particularly if the implementation
is innovative).

3http://projects.cwi.nl/dyntex.

4

