EEE2047S EXAM SIGNALS AND SYSTEMS I

University of Cape Town Department of Electrical Engineering

November 2021
2 hours

Information

- The exam is closed-book.
- There are two parts to this exam. Each part must be answered and submitted in separate exam books.
- Part A has four questions totalling 40 marks. You must answer all of them.
- Part B has three questions totalling 30 marks. You must answer all of them.
- Marks are awarded based on method and clarity of presentation. Just writing down the answer is not a good strategy.
- The last page of this exam paper contains an information sheet with standard Fourier and Laplace transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

PART A

The two parts of the exam must be answered in separate sets of exam books.

1. Let $g(t)$ be the function

Sketch the following:
(a) $y_{1}(t)=g(t-2)$
(b) $y_{2}(t)=g(2-t)$
(c) $y_{3}(t)=g(2 t-2)$
(d) $y_{4}(t)=\int_{-\infty}^{t} g(\tau) d \tau$
(e) The generalised derivative $y_{5}(t)=\frac{d}{d t} g(t)$.
2. (a) Find the complex exponential Fourier series of the function

$$
x(t)=\sum_{k=-\infty}^{\infty} \delta(t-k T)
$$

(b) The signal

$$
g(t)=(1+j) e^{j \omega_{0} t}+(1-j) e^{-j \omega_{0} t}
$$

can be written in the form

$$
g(t)=a \cos \left(\omega_{0} t+b\right)
$$

for some values of a and b. Find these values.
(c) Find the Fourier transform of the signal

$$
y(t)=\delta\left(\frac{t-b}{a}\right) .
$$

3. Consider the system below:

Suppose the two components are characterised by the following input-output relationships:

$$
\begin{aligned}
& \text { System 1: } v(t)=h_{1}(t) * x(t) \quad \text { with } \quad h_{1}(t)=u(t) \\
& \text { System 2: } y(t)=\int_{t-3}^{t} v(\tau) d \tau
\end{aligned}
$$

It is easy to show that System 2 is linear, and you may assume this to be true without proving it.
(a) Show that System 2 is time invariant.
(b) Is the overall system linear and time invariant? Why?
(c) Show that the impulse response of System 2 is $h(t)=u(t)-u(t-3)$.
(d) Determine and plot the impulse response of the overall system.
(10 marks)
4. The following is a valid Fourier transform pair:

$$
e^{-|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{2}{\omega^{2}+1} .
$$

(a) Sketch the signal $x_{a}(t)=4 e^{-|t| / 16}$.
(b) Find the Fourier transform of $x_{a}(t)$, and sketch the corresponding magnitude and phase.
(c) Find the Fourier transform of $x_{b}(t)=\frac{1}{(t-1)^{2}+1}$.

PART B

The two parts of the exam must be answered in separate sets of exam books.
5. A system is defined by the following differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}-12 y(t)=\frac{d x(t)}{d t}-3 x(t)
$$

(a) What is the transfer function $H(s)$ of this system? Comment on the stability of the system.
(b) If $y\left(0^{-}\right)=1$ and $\dot{y}\left(0^{-}\right)=3$, what is the zero input response of this system? Comment on the properties of this response.
6. A system has a transfer function given by

$$
H(s)=\frac{1}{s^{2}+6 s+10} .
$$

(a) Show that its impulse response is $h(t)=e^{-3 t} \sin (t) u(t)$.
(b) What is the output when the input $x(t)=e^{-2 t} u(t)$?
7. The frequency response of a filter is defined as follows:

$$
H(\omega)=\frac{2500}{2500+70 j \omega-\omega^{2}} .
$$

(a) Sketch the magnitude of the frequency response for the range $-1000 \leq \omega \leq 1000$.
(b) What type of filter is this?
(c) Consider the following signal $X(\omega)$ being passed through this filter:

Calculate the output $y(t)$.
(10 marks)

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$a x(t)+b v(t) \Longleftrightarrow a X(\omega)+b V(\omega)$
Time shift	$x(t-c) \Longleftrightarrow X(\omega) e^{-j \omega c}$
Time scaling	$x(a t) \Longleftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right) \quad a>0$
Time reversal	$x(-t) \Longleftrightarrow X(-\omega)=\overline{X(\omega)}$
Multiplication by power of t	$t^{n} x(t) \Longleftrightarrow j^{n} \frac{d^{n}}{d \omega^{n}} X(\omega) \quad n=1,2, \ldots$
Frequency shift	$x(t) e^{j \omega_{0} t} \Longleftrightarrow X\left(\omega-\omega_{0}\right) \quad \omega_{0}$ real
Multiplication by $\cos \left(\omega_{0} t\right)$	$x(t) \cos \left(\omega_{0} t\right) \Longleftrightarrow \frac{1}{2}\left[X\left(\omega+\omega_{0}\right)+X\left(\omega-\omega_{0}\right)\right]$
Differentiation in time domain	$\frac{d^{n}}{d t^{n}} x(t) \Longleftrightarrow(j \omega)^{n} X(\omega) \quad n=1,2, \ldots$
Integration	$\int_{-\infty}^{t} x(\lambda) d \lambda \Longleftrightarrow \frac{1}{j \omega} X(\omega)+\pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \Longleftrightarrow X(\omega) V(\omega)$
Multiplication in time domain	$x(t) v(t) \Longleftrightarrow \frac{1}{2 \pi} X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) v(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \overline{X(\omega)} V(\omega) d \omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|X(\omega)\|^{2} d \omega$
Duality	$X(t) \Longleftrightarrow 2 \pi x(-\omega)$

Common Fourier Transform Pairs

$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$	$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
$1 \quad(-\infty<t<\infty)$	$2 \pi \delta(\omega)$
$-0.5+u(t)$	$\frac{1}{j \omega}$
$u(t)$	$\pi \delta(\omega)+\frac{1}{j \omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j \omega c} \quad(c$ any real number $)$
$e^{-b t} u(t)$	$\frac{1}{j \omega+b} \quad(b>0)$
$e^{j \omega_{0} t}$	$2 \pi \delta\left(\omega-\omega_{0}\right) \quad\left(\omega_{0}\right.$ any real number $)$
$p_{\tau}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2 \pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2 \pi}$	$2 \pi p_{\tau}(\omega)$
$\left(1-\frac{2\|t\|}{\tau}\right) p_{\tau}(t)$	$\frac{\tau}{2} \operatorname{sinc}\left(\frac{\tau \omega}{4 \pi}\right)$
$\frac{\tau}{2} \operatorname{sinc} \frac{\tau t}{4 \pi}$	$2 \pi\left(1-\frac{2\|\omega\|}{\tau}\right) p_{\tau}(\omega)$
$\cos \left(\omega_{0} t+\theta\right)$	$\pi\left[e^{-j \theta} \delta\left(\omega+\omega_{0}\right)+e^{j \theta} \delta\left(\omega-\omega_{0}\right)\right]$
$\sin \left(\omega_{0} t+\theta\right)$	$j \pi\left[e^{-j \theta} \delta\left(\omega+\omega_{0}\right)-e^{j \theta} \delta\left(\omega-\omega_{0}\right)\right]$
$\sum_{n=-\infty}^{\infty} \delta(t-n T)$	$\frac{2 \pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega-k \frac{2 \pi}{T}\right)$
with $p_{\tau}(t)=u(t+\tau / 2)-u(t-\tau / 2)$	$\operatorname{and} \operatorname{sinc}(\lambda)=\sin (\pi \lambda) /(\pi \lambda)$.

Laplace transform properties

Property	Transform Pair/Property
Linearity	$a x(t)+b v(t) \Longleftrightarrow a X(s)+b V(s)$
Time shift	$x(t-a) u(t-a) \Longleftrightarrow e^{-a s} X(s) \quad a \geq 0$
Time scaling	$x(a t) \Longleftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right) a>0$
Frequency differentiation	$t^{n} x(t) \Longleftrightarrow(-1)^{n} X^{(n)}(s)$
Frequency shift	$e^{a t} x(t) \Longleftrightarrow X(s-a)$
Differentiation	$x^{\prime}(t) \Longleftrightarrow s X(s)-x\left(0^{-}\right)$
	$x^{\prime \prime}(t) \Longleftrightarrow s^{2} X(s)-s x\left(0^{-}\right)-x^{\prime}\left(0^{-}\right)$
	$x^{(n)}(t) \Longleftrightarrow s^{n} X(s)-s^{n-1} x\left(0^{-}\right)-\cdots-x^{(n-1)}\left(0^{-}\right)$
Integration	$\int_{0^{-}}^{t} x(\lambda) d \lambda \Longleftrightarrow \frac{1}{s} X(s)$
	$\int_{-\infty}^{t} x(\lambda) d \lambda \Longleftrightarrow \frac{1}{s} X(s)+\frac{1}{s} \int_{-\infty}^{0^{-}} x(\lambda) d \lambda$
Time convolution	$x(t) * v(t) \Longleftrightarrow X(s) V(s)$
Frequency convolution	$x(t) v(t) \Longleftrightarrow \frac{1}{2 \pi j} X(s) * V(s)$
Initial value: $f\left(0^{+}\right)=\lim _{m}$	$s F(s)$

Initial value: $f\left(0^{+}\right)=\lim _{s \rightarrow \infty} s F(s)$
Final value: $f(\infty)=\lim _{s \rightarrow 0} s F(s)$ with all poles in left-hand plane

Common Unilateral Laplace Transform Pairs

$x(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} X(s) e^{s t} d s$	$X(s)=\int_{0}^{\infty} x(t) e^{-s t} d t$
$\delta(t)$	1
$u(t)$	$\frac{1}{s}$
$t u(t)$	$\frac{1}{s^{2}}$
$t^{n} u(t)$	$\frac{n!}{s^{n+1}}$
$e^{\lambda t} u(t)$	$\frac{1}{s-\lambda}$
$t e^{\lambda t} u(t)$	$\frac{1}{(s-\lambda)^{2}}$
$t^{n} e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
$\cos (b t) u(t)$	$\frac{s}{s^{2}+b^{2}}$
$\sin (b t) u(t)$	$\frac{b}{s^{2}+b^{2}}$
$e^{-a t} \cos (b t) u(t)$	$\frac{s+a}{(s+a)^{2}+b^{2}}$
$e^{-a t} \sin (b t) u(t)$	$\frac{b}{(s+a)^{2}+b^{2}}$
$r e^{-a t} \cos (b t+\theta) u(t)$	$\frac{(r \cos \theta) s+(a r \cos \theta-b r \sin \theta)}{s^{2}+2 a s+\left(a^{2}+b^{2}\right)}$
$r e^{-a t} \cos (b t+\theta) u(t)$	$\frac{0.5 r e^{j \theta}}{s+a-j b}+\frac{0.5 r e^{-j \theta}}{s+a+j b}$
$r e^{-a t} \cos (b t+\theta) u(t)$	$\frac{A s+B}{s^{2}+2 a s+c}$
	$r=\sqrt{\frac{A^{2} c+B^{2}-2 A B a}{c-a^{2}}}, b=\sqrt{c-a^{2}}, \theta=\tan -1$

Trigonometric identities

$$
\begin{aligned}
& \sin (-\theta)=-\sin (\theta) \quad \cos (-\theta)=\cos (\theta) \quad \tan (-\theta)=-\tan (\theta) \quad \sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \\
& \sin (2 \theta)=2 \sin (\theta) \cos (\theta) \quad \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1=1-2 \sin ^{2}(\theta) \\
& \sin \left(\theta_{1}+\theta_{2}\right)=\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \quad \cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \\
& e^{j \theta}=\cos (\theta)+j \sin (\theta)
\end{aligned}
$$

