EEE2047S EXAM SIGNALS AND SYSTEMS I

University of Cape Town Department of Electrical Engineering

November 2018 2 hours

Information

- The exam is closed-book.
- There are 8 questions totaling 75 marks. You must answer all of them.
- Marks are awarded based on method and clarity of presentation. Just writing down the answer is not a good strategy.
- The last two pages of this exam paper contain an information sheet with standard Fourier and Laplace transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

1. Compute the convolution of the following two signals:

2. Consider the system

with input-output relationship

$$y(t) = \int_{t-1/2}^{t+1/2} x(\tau)d\tau.$$

- (a) Is the system linear? Why?
- (b) Is the system time invariant? Why?
- (c) Is the system causal? Why?
- (d) Show that the impulse response of the system is $h(t) = p_1(t)$.
- (e) Find and sketch the output of the system when the input is the unit step x(t) = u(t).

(10 marks)

3. Suppose the signal x(t) can be written as an exponential Fourier series

$$x(t) = e^{-2jt} + je^{-jt} + 2 - je^{jt} + e^{2jt}.$$

- (a) What is the fundamental period of x(t)?
- (b) Plot the magnitude and phase of the Fourier series coefficients of x(t).
- (c) Since x(t) is real it can be written in trigonometric form

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t + b_k).$$

Specify the value of a_0 , and the values of a_k and b_k for all $k \geq 1$.

(10 marks)

4. Find the impulse response of the system with frequency response

$$H(\omega) = \frac{j\omega}{j\omega + 4} - \frac{1}{(j\omega + 4)^2}.$$

For the second term it is useful to apply the frequency differentiation property to the pair

$$e^{-bt}u(t) \qquad \stackrel{\mathcal{F}}{\longleftrightarrow} \qquad \frac{1}{j\omega+b} \qquad (b>0).$$

(10 marks)

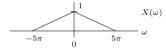
5. A linear system has frequency response

$$H(\omega) = \frac{j\omega}{1 + j\omega}.$$

- (a) What is the DC gain of the system?
- (b) Roughly sketch $|H(\omega)|$. What kind of system does this represent?
- (c) Find the impulse response of the system.
- (d) Determine the system response to $x(t) = \sin(2t)$.

(10 marks)

6. Suppose x(t) is a signal with the spectrum shown below:



- (a) Find the energy contained in x(t).
- (b) Suppose $y_1(t) = x(t)\cos(15\pi t)$. Plot $Y_1(\omega)$.
- (c) Suppose $y_2(t) = p(t)x(t)$ with

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

and T = 2/5. Plot $Y_2(\omega)$.

(10 marks)

7. A causal system has a Laplace transform

$$F(s) = \frac{s^2 - 4}{s^2 + 6s + 9}.$$

- (a) Specify the locations of the poles and zeros of the system, and draw a pole-zero plot. Is the system stable? Why?
- (b) Find a time-domain expression for the response of the system to a unit step x(t) = u(t).

(10 marks)

8. Consider the initial value problem

$$\frac{d^2}{dt^2}y(t) + 7\frac{d}{dt}y(t) + 12y(t) = 0$$

subject to y(0) = 1 and $\frac{d}{dt}y(t) = 2$. Determine Y(s).

(5 marks)

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \iff X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \iff X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \iff j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \iff X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \iff \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \iff (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda)d\lambda \iff \frac{1}{j\omega}X(\omega) + \pi X(0)\delta(\omega)$
Convolution in time domain	$x(t) * v(t) \iff X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \iff \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^{2}(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^{2} d\omega$
Duality	$X(t) \iff 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ $(b>0)$
$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{ au}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2 \pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2\pi}$	$2\pi p_{ au}(\omega)$
$\left(1 - \frac{2 t }{\tau}\right) p_{\tau}(t)$	$\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$
$\frac{1}{2}$ sinc ² $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega-k\frac{2\pi}{T})$
with $p_{\tau}(t) = u(t + \tau/2) - u(t - \tau)$	/2) and $\operatorname{sinc}(\lambda) = \sin(\pi \lambda)/(\pi \lambda)$.

Laplace transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(s) + bV(s)$
Time shift	$x(t-a)u(t-a) \iff e^{-as}X(s) a \ge 0$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{s}{a}) a > 0$
Frequency differentiation	$t^n x(t) \iff (-1)^n X^{(n)}(s)$
Frequency shift	$e^{at}x(t) \iff X(s-a)$
Differentiation	$x'(t) \iff sX(s) - x(0^-)$
	$x''(t) \iff s^2 X(s) - sx(0^-) - x'(0^-)$
	$x^{(n)}(t) \iff s^n X(s) - s^{n-1} x(0^-) - \dots - x^{(n-1)}(0^-)$
Integration	$\int_{0^{-}}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s)$
	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s) + \frac{1}{s} \int_{-\infty}^{0} x(\lambda) d\lambda$
Time convolution	$x(t) * v(t) \iff X(s)V(s)$
Frequency convolution	$x(t)v(t) \iff \frac{1}{2\pi i}X(s) * V(s)$

Initial value: $f(0^+) = \lim_{s \to \infty} sF(s)$

Final value: $f(\infty) = \lim_{s \to 0} sF(s)$ with all poles in left-hand plane

Common Unilateral Laplace Transform Pairs

$x(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+j\infty} X(s)e^{st} ds$	$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$
$\delta(t)$	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
$\cos(bt)u(t)$	$\frac{s}{s^2+b^2}$
$\sin(bt)u(t)$	$\frac{b}{s^2+b^2}$
$e^{-at}\cos(bt)u(t)$	$\frac{s+a}{(s+a)^2+b^2}$
$e^{-at}\sin(bt)u(t)$	$\frac{b}{(s+a)^2+b^2}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}}, \ b = \sqrt{c - a^2}, \ \theta = \tan^{-1}\frac{Aa - b}{A\sqrt{c - a^2}}$

Trigonometric identities

```
\begin{split} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) &= \cos(\theta) & \tan(-\theta) &= -\tan(\theta) & \sin^2(\theta) + \cos^2(\theta) &= 1 \\ \sin(2\theta) &= 2\sin(\theta)\cos(\theta) & \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) &= 2\cos^2(\theta) - 1 &= 1 - 2\sin^2(\theta) \\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) &= \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2) \\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{split}
```