EEE2047S EXAM SIGNALS AND SYSTEMS I

University of Cape Town Department of Electrical Engineering

November 2017 2 hours

Information

- The exam is closed-book.
- There are 7 questions totaling 70 marks. You must answer all of them.
- Marks are awarded based on method and clarity of presentation. Just writing down the answer is not a good strategy.
- The last page of this exam paper contains an information sheet with standard Fourier transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

1. A moving average LTI system has impulse response

 $h(t) = p_1(t - 1/2),$

where $p_1(t)$ is the pulse of unit width and unit height centered on the origin.

- (a) Is the system causal? Why?
- (b) Find and sketch the output under initial rest conditions when the input is $x(t)=2e^{-3t}u(t).$
- (c) Find the frequency response of the system.

(10 marks)

2. The signal

has a Fourier series representation

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\pi t}$$

where

$$=\begin{cases} 1/2 & k=0\\ \frac{1}{k\pi}\sin(k\pi/2) & \text{otherwise.} \end{cases}$$

(a) How much signal power is contained in the first harmonic?

 c_k

(b) Show that the signal $y(t) = x(t)e^{j5\pi t}$ can be written in the form

$$y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\pi t}$$

with $d_k = c_{k-5}$.

(c) Plot the magnitude and phase of these coefficients d_k for k = 1 to k = 9.

(10 marks)

- 3. Recall Euler's formula $e^{j\theta} = \cos(\theta) + j\sin(\theta)$. Answer the following two questions, which do not depend on one another:
- (a) The signal $f(t) = -2\cos(\omega_0 t) + 2\sqrt{3}\sin(\omega_0 t + \pi/3)$ can be written in the form

$$f(t) = ce^{j\omega_0 t} + c^* e^{-j\omega_0 t},$$

where c^* is the conjugate of c. Find the value of c in this representation.

(b) The signal

$$g(t) = (1+j)e^{j\omega_0 t} + (1-j)e^{-j\omega_0 t}$$

can be written in the form

$$g(t) = a\cos(\omega_0 t + b)$$

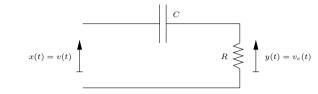
for some values of a and b. Find these values.

(10 marks)

- 4. (a) Simplify the following expression: $w(t) = \delta(t-3) \frac{4-jt^2}{2t}$.
 - (b) Find the Fourier transform of $x(t) = (\cos(5t) + e^{-2t})u(t)$.
 - (c) Find the inverse Fourier transform of $Y(\omega) = \frac{5\omega}{i\omega+1}$.
 - (d) Suppose $\pi_T(t) = \sum_{k=-\infty}^{\infty} \delta(t kT)$ and $x(t) = \operatorname{sinc}\left(\frac{t}{2\pi}\right)$. Sketch $Y(\omega)$, the Fourier transform of $y(t) = \pi_T(t) * x(t)$ for T = 2.

(10 marks)

5. The RC highpass circuit below

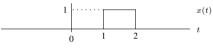


has an impulse response given by

$$h(t) = \delta(t) - \frac{1}{\tau} e^{-\frac{t}{\tau}} u(t),$$

where $\tau = RC$ is the time constant of the network.

- (a) Write down a differential equation relating the input and the output of the system.
- (b) Show that the step response of the network, namely the output when the input is x(t) = u(t), is given by $g(t) = e^{-\frac{t}{\tau}}u(t)$.
- (c) Using this result, find the response of the circuit to the input below, under an initial rest assumption:



(10 marks)

6. (a) Consider the right-sided function

$$g(t) = \begin{cases} t & 0 \le t < 2\\ 4 & t \ge 2. \end{cases}$$

Show that this can be written as

$$g(t) = tu(t) - (t-2)u(t-2) + 2u(t-2)$$

and find its Laplace transform.

(b) Find the inverse Laplace transform of $F(s) = \frac{s+3}{s^2+4s+29}$

(10 marks)

7. A causal system obeys the following differential equation:

$$\frac{d^2}{dt^2}w(t) + w(t) = x(t),$$

where x(t) is the input and w(t) is the output.

- (a) Find the location of the poles and the zeros of the system. Is it stable? Why?
- (b) Use the Laplace transform to find the output signal w(t) when the input is $x(t) = (t^2 + 2)u(t)$. Assume the initial conditions $w(0^-) = 1$ and $w'(0^-) = -1$, where w'(t) is the first derivative of w(t) with respect to t.

(10 marks)

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \iff X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \iff X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \iff j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \iff X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \iff \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \iff (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{i\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \iff X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \iff \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$
Duality	$X(t) \iff 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{i\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b}$ (b > 0)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{\tau}(t)$	$\tau \operatorname{sinc} \frac{\tau \omega}{2\pi}$
$\tau \operatorname{sinc} \frac{\tau t}{2\pi}$	$2\pi p_{\tau}(\omega)$
$\left(1 - \frac{2 t }{\tau}\right) p_{\tau}(t)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\tau \omega}{4\pi} \right)$
$\frac{\tau}{2}$ sinc ² $\frac{\tau t}{4\pi}$	$2\pi \left(1 - \frac{2 \omega }{\tau}\right) p_{\tau}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega-k\frac{2\pi}{T})$

with $p_{\tau}(t) = u(t + \tau/2) - u(t - \tau/2)$ and $\operatorname{sinc}(\lambda) = \sin(\pi\lambda)/(\pi\lambda)$.

Laplace transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(s) + bV(s)$
Time shift	$x(t-a)u(t-a) \iff e^{-as}X(s) a \ge 0$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{s}{a}) a > 0$
Frequency differentiation	$t^n x(t) \iff (-1)^n X^{(n)}(s)$
Frequency shift	$e^{at}x(t) \iff X(s-a)$
Differentiation	$x'(t) \iff sX(s) - x(0^-)$
	$x''(t) \iff s^2 X(s) - s x(0^-) - x'(0^-)$
	$x^{(n)}(t) \Longleftrightarrow s^n X(s) - s^{n-1} x(0^-) - \dots - x^{(n-1)}(0^-)$
Integration	$\int_{0^{-}}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s)$
	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s) + \frac{1}{s} \int_{-\infty}^{0-} x(\lambda) d\lambda$
Time convolution	$x(t) * v(t) \iff X(s)V(s)$
Frequency convolution	$x(t)v(t) \iff \frac{1}{2\pi i}X(s) * V(s)$

Initial value: $f(0^+) = \lim_{s \to \infty} sF(s)$

Final value: $f(\infty) = \lim_{s \to 0} sF(s)$ with all poles in left-hand plane

Common Unilateral Laplace Transform Pairs

$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$	$X(s) = \int_{0^{-}}^{\infty} x(t) e^{-st} dt$
$\delta(t)$	1
u(t)	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$ $\frac{\frac{1}{s^2}}{\frac{n!}{s^{n+1}}}$
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{n^{n+1}}$
$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)n+1}$
$\cos(bt)u(t)$	$\frac{s}{s^2+b^2}$
$\sin(bt)u(t)$	$\frac{b}{s^2+b^2}$
$e^{-at}\cos(bt)u(t)$	$\frac{\frac{s+a}{(s+a)^2+b^2}}{(s+a)^2+b^2}$
$e^{-at}\sin(bt)u(t)$	$\frac{b}{(s+a)^2+b^2}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s_{\mu}^{2} + 2as + (a^{2} + b^{2})}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2 c + B^2 - 2ABa}{c - a^2}}, \ b = \sqrt{c - a^2}, \ \theta = \tan^{-1} \frac{Aa - b}{A\sqrt{c - a^2}}$

Trigonometric identities

 $\begin{aligned} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) &= \cos(\theta) & \tan(-\theta) &= -\tan(\theta) & \sin^2(\theta) + \cos^2(\theta) &= 1\\ \sin(2\theta) &= 2\sin(\theta)\cos(\theta) & \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta) &= 2\cos^2(\theta) - 1 &= 1 - 2\sin^2(\theta)\\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) &= \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)\\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{aligned}$