EEE2035F EXAM SIGNALS AND SYSTEMS I

HINTS: June 2016

University of Cape Town Department of Electrical Engineering

June 2016 2 hours

Information

- The exam is closed-book.
- There are δ questions totaling 75 marks. You must answer all of them.
- Marks are awarded based on method and clarity of presentation. Just writing down the answer is not a good strategy.
- The last page of this exam paper contains an information sheet with standard Fourier transforms, transform properties, and some trigonometric identities.
- You have 2 hours.

1. Consider the signal below:

Plot the following:

(a)
$$y_1(t) = x(1-t)$$

(b) $y_2(t) = x(t+1/2)\delta(t-1)$
(c) $y_3(t) = x(t/2-1)$
(d) $y_4(t) = \int_{-\infty}^t x(\lambda)d\lambda$
(e) $y_5(t) = \frac{d}{dt}x(t).$

(10 marks)

- 2. Note that the systems in the three parts of this question are different.
 - (a) The input x(t) and the output y(t) of a system T_a are related by the equation

$$y(t) = x(t-1) + x(1-t)$$

Is the system time invariant?

(b) When the input to a LTI system T_b is x(t) below then the output is y(t):

Find the output when the input is the following:

(c) A LTI system T_c with input x(t) and output y(t) is governed by the input-output relationship

$$y(t) = \frac{1}{3}(x(t+1) + x(t) + x(t-1)).$$

Plot the impulse response of the system.

(10 marks)

3. A system with impulse response

Find and plot the output y(t).

(10 marks)

4. The signal

can be written in the form

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\pi t},$$

where the coefficients satisfy

$$c_{k} = \begin{cases} 1/4 & (k=0) \\ \frac{1}{jk\pi} \left[\frac{1}{k\pi} \sin(k\pi/2)e^{-jk\pi/2} - \frac{1}{2}e^{-jk\pi} \right] & \text{(otherwise)}. \end{cases}$$

- (a) Show that $|c_2| = \frac{1}{4\pi}$ and $\angle c_2 = \frac{\pi}{2}$. What frequency is associated with this coefficient?
- (b) What is the value of the coefficient c_{-2} ?

(c) The signal

can be written in the form $y(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\pi t}$. Show that $d_k = c_k e^{-jk\pi/3}$. (d) What are the values $|d_2|$ and $\angle d_2$?

(10 marks)

5. A LTI system generates the output

$$y(t) = (e^{-2t} - e^{-3t})u(t)$$

in response to the input $x(t) = e^{-2t}u(t)$.

(a) Show that the frequency response of the system is

$$H(\omega) = \frac{1}{j\omega + 3}.$$

- (b) Determine the unit impulse response h(t) of the system.
- (c) Sketch the magnitude response $|H(\omega)|$ and phase response $\angle H(\omega)$ of the system.
- (d) What is the output y(t) of the system when the input is $x(t) = e^{j3t}$?

(10 marks)

6. A system with input x(t) and output y(t) is described by the differential equation

$$\frac{d^2}{dt^2}y(t) - 5\frac{d}{dt}y(t) + 6y(t) = -\frac{d}{dt}x(t).$$

(a) Show that the frequency response of the system is

$$H(\omega) = \frac{-j\omega}{(j\omega - 3)(j\omega - 2)}$$

(b) Find the impulse response of the system. You can use the partial fraction expansion below if necessary:

$$\frac{-1}{(s-2)(s-3)} = \frac{1}{(s-2)} - \frac{1}{(s-3)}.$$
(10 marks)

7. The Fourier transform of signal x(t) is given by

$$X(\omega) = \frac{2}{(j\omega)}(1 - \cos(\omega))$$

- (a) Without calculating x(t) find the Fourier transform $Y(\omega)$ of y(t) = x(0.5t 2).
- (b) Show that the following is a valid Fourier pair:

$$\frac{1}{2}(\delta(t-1) + \delta(t+1)) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \cos(\omega)$$

(c) Find the inverse Fourier transform x(t). You may use the result from (b) if required.

(10 marks)

8. The periodic impulse train signal

$$P_{\omega_s}(\omega) = \omega_s \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$$

is sketched below:

$$(\omega_s) (\omega_s) (\omega_s) (\omega_s) (\omega_s) (\omega_s) P_{\omega_s}(\omega)$$

$$-2\omega_s -\omega_s 0 \omega_s 2\omega_s \omega$$

(a) Suppose the signal x(t) has the following spectrum:

Sketch $Y(\omega) = P_{\omega_s}(\omega) * X(\omega)$ for $\omega_s = 10$.

- (b) What is the smallest value of ω_s for which the signal x(t) can be recovered from $Y(\omega) = P_{\omega_s}(\omega) * X(\omega)$?
- (c) Specify a filter $H(\omega)$ that can be used to reconstruct x(t) from $Y(\omega)$ in part (a).

(5 marks)

INFORMATION SHEET

Fourier transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(\omega) + bV(\omega)$
Time shift	$x(t-c) \iff X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \Longleftrightarrow \frac{1}{a} X(\frac{\omega}{a}) a > 0$
Time reversal	$x(-t) \iff X(-\omega) = \overline{X(\omega)}$
Multiplication by power of t	$t^n x(t) \iff j^n \frac{d^n}{d\omega^n} X(\omega) n = 1, 2, \dots$
Frequency shift	$x(t)e^{j\omega_0 t} \iff X(\omega - \omega_0) \omega_0 \text{ real}$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \iff \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in time domain	$\frac{d^n}{dt^n}x(t) \iff (j\omega)^n X(\omega) n = 1, 2, \dots$
Integration	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in time domain	$x(t) * v(t) \iff X(\omega)V(\omega)$
Multiplication in time domain	$x(t)v(t) \iff \frac{1}{2\pi}X(\omega) * V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega)d\omega$
Parseval's theorem (special case)	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$
Duality	$X(t) \iff 2\pi x(-\omega)$

Common Fourier Transform Pairs

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
$1 (-\infty < t < \infty)$	$2\pi\delta(\omega)$
-0.5 + u(t)	$\frac{1}{j\omega}$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\delta(t)$	1
$\delta(t-c)$	$e^{-j\omega c}$ (c any real number)
$e^{-bt}u(t)$	$\frac{1}{i\omega+b} (b>0)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$ (ω_0 any real number)
$p_{ au}(t)$	$ au \mathrm{sinc} \frac{ au \omega}{2\pi}$
$ au \mathrm{sinc} \frac{ au t}{2\pi}$	$2\pi p_{\tau}(\omega)$
$\left(1-rac{2 t }{ au} ight)p_{ au}(t)$	$\frac{\tau}{2}\mathrm{sinc}^2\left(\frac{\tau\omega}{4\pi}\right)$
$\frac{\tau}{2}\operatorname{sinc}^2\frac{\tau t}{4\pi}$	$2\pi \left(1 - rac{2 \omega }{ au} ight) p_{ au}(\omega)$
$\cos(\omega_0 t + \theta)$	$\pi[e^{-j\theta}\delta(\omega+\omega_0)+e^{j\theta}\delta(\omega-\omega_0)]$
$\sin(\omega_0 t + \theta)$	$j\pi[e^{-j\theta}\delta(\omega+\omega_0)-e^{j\theta}\delta(\omega-\omega_0)]$
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega-k\frac{2\pi}{T})$

with $p_{\tau}(t) = u(t + \tau/2) - u(t - \tau/2)$ and $\operatorname{sinc}(\lambda) = \frac{\sin(\pi \lambda)}{(\pi \lambda)}$.

Laplace transform properties

Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \iff aX(s) + bV(s)$
Time shift	$x(t-a)u(t-a) \iff e^{-as}X(s) a \ge 0$
Time scaling	$x(at) \iff \frac{1}{a}X(\frac{s}{a}) a > 0$
Frequency differentiation	$t^n x(t) \iff (-1)^n X^{(n)}(s)$
Frequency shift	$e^{at}x(t) \iff X(s-a)$
Differentiation	$x'(t) \iff sX(s) - x(0^-)$
	$x^{\prime\prime}(t) \Longleftrightarrow s^2 X(s) - s x(0^-) - x^{\prime}(0^-)$
	$x^{(n)}(t) \iff s^n X(s) - s^{n-1} x(0^-) - \dots - x^{(n-1)}(0^-)$
Integration	$\int_{0^{-}}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s)$
	$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \frac{1}{s} X(s) + \frac{1}{s} \int_{-\infty}^{0^{-}} x(\lambda) d\lambda$
Time convolution	$x(t) * v(t) \iff X(s)V(s)$
Frequency convolution	$x(t)v(t) \iff \frac{1}{2\pi j}X(\omega) * V(\omega)$

Initial value: $f(0^+) = \lim_{s \to \infty} sF(s)$

Final value: $f(\infty) = \lim_{s \to 0} sF(s)$ with all poles in left-hand plane

Common Unilateral Laplace Transform Pairs

$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s) e^{st} ds$	$X(s) = \int_{0^{-}}^{\infty} x(t)e^{-st}dt$
$\delta(t)$	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
$\cos(bt)u(t)$	$\frac{s}{s^2+b^2}$
$\sin(bt)u(t)$	$\frac{b}{s^2+b^2}$
$re^{-\alpha t}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
$re^{-\alpha t}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-ib} + \frac{0.5re^{-j\theta}}{s+a+ib}$
$re^{-\alpha t}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2 c + B^2 - 2ABa}{c - a^2}}, \ \theta = \tan^{-1} \frac{Aa - b}{A\sqrt{c - a^2}}, \ b = \sqrt{c - a^2}$

Trigonometric identities

 $\begin{aligned} \sin(-\theta) &= -\sin(\theta) & \cos(-\theta) = \cos(\theta) & \tan(-\theta) = -\tan(\theta) & \sin^2(\theta) + \cos^2(\theta) = 1\\ \sin(2\theta) &= 2\sin(\theta)\cos(\theta) & \cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)\\ \sin(\theta_1 + \theta_2) &= \sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2) & \cos(\theta_1 + \theta_2) = \cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)\\ e^{j\theta} &= \cos(\theta) + j\sin(\theta) \end{aligned}$